首页> 外文学位 >Molecular mechanics of tropocollagen-hydroxyapatite biomaterials.
【24h】

Molecular mechanics of tropocollagen-hydroxyapatite biomaterials.

机译:原胶原-羟基磷灰石生物材料的分子力学。

获取原文
获取原文并翻译 | 示例

摘要

Hard biomaterials such as bone, dentin, and nacre show remarkable mechanical performance and serve as inspiration for development of next generation of composite materials with high strength and toughness. Such materials have primarily an organic phase (e.g. tropocollagen (TC) or chitin) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered arrangement at nanoscopic length scales. Interfacial interactions between the organic phases and the mineral phases and structural effects arising due to the staggered and hierarchical arrangements are identified to be the two most important determinants for high mechanical performance of such biomaterials. Effects of these determinants in such biomaterials are further intertwined with factors such as loading configuration, chemical environment, mineral crystal shape, and residue sequences in polymer chains. Atomistic modeling is a desired approach to investigate such sub nanoscale issues as experimental techniques for investigations at such small scale are still in nascent stage.;For this purpose, explicit three dimensional (3D) molecular dynamics (MD) and ab initio MD simulations of quasi-static mechanical deformations of idealized Tropocollagen-Hydroxyapatite (TC-HAP) biomaterials with distinct interfacial arrangements and different loading configurations are performed. Focus is on developing insights into the molecular level mechanics of TC-HAP biomaterials at fundamental lengthscale with emphasis on interface phenomenon. Idealized TC-HAP atomistic models are analyzed for their mechanical strength and fracture failure behavior from the viewpoint of interfacial interactions between TC and HAP and associated molecular mechanisms. In particular, study focuses on developing an understanding of factors such as role of interfacial structural arrangement, hierarchical structure design, influence of water, effect of changes in HAP crystal shape, and mutations in TC molecule on the mechanical strength of TC-HAP biomaterials. In conjunction, a continuum level tension-shear-chain (TSC) model is also implemented to analyze fracture resistance characteristics in TC-HAP nanocomposites. Results and analyses shed light on the failure mechanisms in TC-HAP type nanocomposite systems with a chemo-mechanical understanding of the interfacial interaction between TC and HAP.;Analyses show that (1) failure of TC-HAP nanocomposites at nanoscale is predominantly peak strain dependent phenomenon, (2) presence of water in most cases strengthens the TC-HAP biomaterial by acting as a bridge via hydrogen bond mediated crosslinks, (3) TC-HAP nanostructures with plate shaped HAP crystals show higher toughness and stability as compared to TC-HAP nanostructures with needle shaped HAP crystals, and (4) mutations in TC are responsible for Osteogenesis Imperfecta bone disorder in an indirect manner, wherein mutations in TC affect the shape and distribution of mineral phase during growth and nucleation period of bone. Overall study emphasizes that interfacial structural arrangement between polymer phase and mineral phase in TC-HAP and similar nanocomposite biomaterials is an important factor in determining their mechanical strength and should be carefully studied and selected for development of high performance nanocomposite biomaterials. Findings and understandings from this research have significant impact on polymer-ceramic nanocomposite mechanics, biomaterial and biomimetic materials development, and bone fragility disorders related medical science development.
机译:诸如骨头,牙本质和珍珠质之类的坚硬生物材料显示出非凡的机械性能,并为开发具有高强度和韧性的下一代复合材料提供了灵感。这样的材料主要具有以纳米级的长度尺度交错排列的有机相(例如对流胶原蛋白(TC)或几丁质)和矿物相(例如羟基磷灰石(HAP)或文石)。有机相和矿物相之间的界面相互作用以及由于交错和分层排列而产生的结构效应被确定为这种生物材料的高机械性能的两个最重要的决定因素。这些决定因素在这类生物材料中的作用还与诸如负载构型,化学环境,矿物晶体形状和聚合物链中的残基序列等因素交织在一起。原子建模是研究亚纳米级问题的一种理想方法,因为用于如此小规模研究的实验技术仍处于起步阶段。为此,明确的三维(3D)分子动力学(MD)和从头开始的MD模拟理想的对流胶原-羟基磷灰石(TC-HAP)生物材料的静态机械变形具有不同的界面排列和不同的加载配置。重点是在基本长度尺度上发展对TC-HAP生物材料的分子水平力学的见识,重点是界面现象。从TC和HAP之间的界面相互作用以及相关的分子机理的角度,分析了理想的TC-HAP原子模型的机械强度和断裂破坏行为。尤其是,研究的重点是发展对诸如界面结构布置的角色,层次结构设计,水的影响,HAP晶体形状变化的影响以及TC分子突变对TC-HAP生物材料的机械强度等因素的理解。结合起来,还采用了连续水平的张力-剪切链(TSC)模型来分析TC-HAP纳米复合材料的抗断裂特性。结果和分析揭示了TC-HAP型纳米复合材料系统的失效机理,并从化学机理上了解了TC与HAP之间的界面相互作用。分析表明:(1)TC-HAP纳米复合材料在纳米级的失效主要是峰值应变。依赖现象,(2)在大多数情况下,水的存在通过氢键介导的交联充当桥梁,从而增强了TC-HAP生物材料,(3)具有板状HAP晶体的TC-HAP纳米结构比TC具有更高的韧性和稳定性具有针状HAP晶体的-HAP纳米结构以及TC中的(4)突变以间接方式导致成骨不全性骨疾病,其中TC中的突变影响骨骼生长和成核期间矿物质相的形状和分布。总体研究强调,TC-HAP和类似纳米复合生物材料中聚合物相与矿物相之间的界面结构排列是决定其机械强度的重要因素,应谨慎研究并选择高性能纳米复合生物材料。这项研究的发现和理解对高分子陶瓷纳米复合材料力学,生物材料和仿生材料的发展以及与骨科学相关的骨脆性疾病具有重大影响。

著录项

  • 作者

    Dubey, Devendra Kumar.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Applied Mechanics.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号