首页> 外文学位 >The Role of Insulators and Transcription Factors in Genome Organization and Function in Drosophila.
【24h】

The Role of Insulators and Transcription Factors in Genome Organization and Function in Drosophila.

机译:绝缘子和转录因子在果蝇基因组组织和功能中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Epigenetic changes can alter the genome function without altering their base composition. These differences can be inherited and can provide an important source of variation within populations that can be acted upon by natural selection. Epigenetic changes in gene expression can take place via covalent modifications of histone or DNA as well as the three-dimensional organization of chromatin in the nucleus. Insulators mediate chromatin interactions in cis or trans between different regions of the genome and may be important factors regulating the 3D organization of the genome. BEAF-32 is an insulator protein highly conserved in Drosophila but not found in other species. Here I describe an analysis of the epigenetic function of BEAF-32 in Drosophila. I identify the BEAF-32 insulator as a cis regulatory element separating genes arranged in a head-to-head orientation. I then compare the genome-wide binding landscapes of the BEAF-32 in four different Drosophila species and highlight the evolutionarily conserved presence of this protein between close adjacent genes. During the formation of new Drosophila species, binding of BEAF-32 in the genome is altered along with changes in genome organization caused by DNA re-arrangements. The alterations of BEAF-32 distribution correlate with new gene expression profiles, which in turn translate into specific and distinct phenotypes. Epigenetic information encoded in the 3D organization of the genome mediated by insulators needs to be faithfully transmitted through mitosis and meiosis in order to effect evolutionary change. To address this issue, I have also studied the function of the Myc transcription factor. I found that a subset of Myc sites remain on mitotic chromatin and overlap with aligned insulator proteins binding sites. These sites are enriched at the boundaries of topological chromosome domains, suggesting they may be important for maintaining chromosome structure throughout the cell cycle. Together, these results suggest a mechanism for the establishment of differences in transcription patterns during evolution and may help to decipher the role of epigenetic changes in evolution.
机译:表观遗传学的改变可以改变基因组的功能而不改变其碱基组成。这些差异是可以遗传的,并且可以提供种群中重要的变异源,可以通过自然选择来对其施加作用。基因表达的表观遗传变化可以通过组蛋白或DNA的共价修饰以及核中染色质的三维组织来发生。绝缘子介导基因组不同区域之间顺式或反式的染色质相互作用,可能是调节基因组3D组织的重要因素。 BEAF-32是一种在果蝇中高度保守但在其他物种中未发现的绝缘子蛋白。在这里,我描述了果蝇中BEAF-32的表观遗传功能分析。我将BEAF-32绝缘子鉴定为顺式调节元件,可分离以头对头方向排列的基因。然后,我比较了四种不同果蝇物种中BEAF-32的全基因组结合态势,并强调了该蛋白质在相邻基因之间的进化保守存在。在新的果蝇物种的形成过程中,基因组中BEAF-32的结合会随着DNA重排引起的基因组组织变化而改变。 BEAF-32分布的变化与新的基因表达谱相关,而新的基因表达谱又转化为特定而独特的表型。由绝缘子介导的基因组3D组织中编码的表观遗传信息需要如实地通过有丝分裂和减数分裂传递,以实现进化变化。为了解决这个问题,我还研究了Myc转录因子的功能。我发现Myc位点的一部分保留在有丝分裂染色质上,并与对齐的绝缘子蛋白结合位点重叠。这些位点在拓扑染色体结构域的边界处富集,表明它们对于在整个细胞周期中维持染色体结构可能很重要。总之,这些结果提出了在进化过程中建立转录模式差异的机制,并可能有助于破译表观遗传变化在进化中的作用。

著录项

  • 作者

    Yang, Jingping.;

  • 作者单位

    Emory University.;

  • 授予单位 Emory University.;
  • 学科 Biology Genetics.;Biology Bioinformatics.;Biology Evolution and Development.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号