首页> 外文学位 >Interference microscopy: Super-resolution particle tracking and velocimetry.
【24h】

Interference microscopy: Super-resolution particle tracking and velocimetry.

机译:干涉显微镜:超高分辨率粒子跟踪和测速。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes the theory and applications of a new approach to imaging called Interference Microscopy (IM). Interfere Microscopy works by inserting a lens and axicon into the optical path of an imaging system. The lens and axicon serve to re-image the image produced by the original optical system. However, instead of imaging a point in the measurement plane to a point in an image plane, the IM system maps a point along a line produced by an interference pattern. This unique interference pattern, called a Bessel beam, allows for several unique applications of the IM system. The first chapter of this dissertation describes a rigorous derivation of the three dimensional point spread function of the IM system. Using the Frenel Diffraction Integral, light from a paraxial off axis point source is propagated through the axicon to an imaging plane. The resulting analytical expression for the diffraction pattern produced is then experimentally verified. Chapter 2 covers the use of IM for single view three dimensional particle locating. This application relies on the analytical expression for the three dimensional point spread function of the IM system. Once the properties of an interference pattern produced by a particle are determined, it is possible to directly calculate the three dimensional location of the particle that produced it. Image analysis algorithms to determine interference pattern properties are described and the method is experimentally verified and applied to pressure driven flow in a rectangular channel and to a particle carried by an electrothermal vortex. A measurement depth of 200 μm is demonstrated with an accuracy of ± 3 μm in calculating the height of the particle. In the third chapter the IM system is applied to another velocity measurement technique, Particle Image Velocimetry (PIV). Here, simulated images of a typical microscope and the same microscope with the IM attachment are used to investigate the resolution limits of PIV measurements. A clear increase in resolution is found, nearly double that of the base microscope. The last chapter discusses the ability of the IM system to resolve features that are smaller than the diffraction limit of the base microscope. The Reyleigh limit for the IM system is shown to be less than one third the base microscope. Diffraction simulations are performed to verify this limit and experimental images of sub-diffraction limit particles are presented.
机译:本文介绍了一种称为干涉显微镜(IM)的新型成像方法的理论和应用。干涉显微镜的工作原理是将透镜和轴锥插入成像系统的光路中。镜头和轴锥用于重新成像原始光学系统产生的图像。然而,IM系统不是将测量平面中的点成像到图像平面中的点,而是沿着由干涉图案产生的线来映射点。这种独特的干涉图样称为贝塞尔光束,可用于IM系统的多种独特应用。本文的第一章对IM系统的三维点扩展函数进行了严格的推导。使用菲涅耳衍射积分,来自近轴偏轴点光源的光通过轴锥传播到成像平面。然后通过实验验证产生的衍射图样的所得分析表达式。第2章介绍了IM在单视图三维粒子定位中的使用。此应用程序依赖于IM系统的三维点扩展函数的解析表达式。一旦确定了由颗粒产生的干涉图案的性质,就可以直接计算产生它的颗粒的三维位置。描述了确定干涉图案特性的图像分析算法,并对该方法进行了实验验证,并将其应用于矩形通道中的压力驱动流以及电热涡旋所携带的粒子。在计算颗粒高度时,测量深度为200μm,精度为±3μm。在第三章中,IM系统被应用于另一种速度测量技术,即粒子图像测速(PIV)。在此,使用典型显微镜和带有IM附件的同一显微镜的模拟图像来研究PIV测量的分辨率极限。发现分辨率明显提高,几乎是基本显微镜的两倍。最后一章讨论了IM系统解析小于基本显微镜衍射极限的特征的能力。 IM系统的Reyleigh限制显示为基本显微镜的三分之一以下。进行衍射模拟以验证该极限,并给出了亚衍射极限粒子的实验图像。

著录项

  • 作者

    Snoeyink, Craig A.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号