首页> 外文学位 >Charge-Transfer Oligomers and Polymers for Organic Photovoltaics: Structure, dynamics, and their implications for solar devices.
【24h】

Charge-Transfer Oligomers and Polymers for Organic Photovoltaics: Structure, dynamics, and their implications for solar devices.

机译:用于有机光伏的电荷转移低聚物和聚合物:结构,动力学及其对太阳能设备的影响。

获取原文
获取原文并翻译 | 示例

摘要

Charge-transfer oligomers and polymers, whose adjacent building blocks differ in their electron affinities, are promising materials for organic photovoltaic (OPV) devices, achieving higher power conversion efficiencies (PCE) than benchmark homopolymers. However, the effects of this intramolecular charge transfer on OPV device function are not well understood, making optimization of these materials inefficient. In this thesis, the aggregation characteristics and dynamics of these systems are investigated to build a model for how the charge transfer character between these conjugated building blocks affect OPV device function.;The first system, the M series, is a thiophene:thienothiophene oligomer series that exhibits distinct self-assembly properties depending on their length. For oligomers of moderate length, long crystalline fibers are formed upon spin-coating. However, for shorter or longer oligomers, no discernible pattern forms. Using grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM), the relationship between molecular aggregation and macroscopic structure self-assembly in this system is obtained.;The second system, the PTB series, is an alternating thienothiophene: benzodithiophene copolymer library, exhibiting one-time record-breaking power conversion efficiencies in OPV devices. However, these polymers have a poorly understood variation of 2–8% PCE as a function of pendant moieties along the backbone. Therefore, the molecular aggregation is characterized by grazing incidence X­ray diffraction and referenced to the bulk characteristics of corresponding OPV devices.;Ultrafast optical transient absorption measurements were performed on PTB polymers in solution, neat films, and bulk heterojunction (BHJ) films, in order to understand their intramolecular, donor:donor, and donor:acceptor dynamics, respectively. In these studies, exciton dissociation is observed even without an electron acceptor; and the extent of this intramolecular charge pair dissociation is correlated to corresponding device PCE. This finding is not explained in existing OPV models.;The BHJ studies reveal that the system has a memory of the intramolecular polymer dynamics long after electron transfer to the PCBM acceptors. Based on these studies, a model is proposed to explain how ultrafast information can be remembered by the system hundreds of picoseconds later, and how this process relates to the side moieties adorning the polymer fragments. This understanding has the potential to guide future OPV design.
机译:电荷转移低聚物和聚合物,其相邻的结构单元的电子亲和力不同,是有机光伏(OPV)器件的有前途的材料,比基准均聚物具有更高的功率转换效率(PCE)。但是,这种分子内电荷转移对OPV器件功能的影响尚未得到很好的理解,从而使这些材料的优化效率低下。本文研究了这些体系的聚集特性和动力学,建立了一个模型,研究了这些共轭结构单元之间的电荷转移特性如何影响OPV器件的功能。第一个系统,M系列,是噻吩:噻吩并噻吩低聚物系列根据长度的不同,它们表现出独特的自组装特性。对于中等长度的低聚物,在旋涂时会形成长结晶纤维。但是,对于较短或较长的低聚物,没有明显的图案形式。使用掠入射X射线衍射(GIXD)和原子力显微镜(AFM),获得了该系统中分子聚集与宏观结构自组装之间的关系。第二个系统PTB系列是交替的噻吩并噻吩:苯并二噻吩共聚物库,在OPV器件中展示了一次破纪录的功率转换效率。然而,这些聚合物作为骨架上侧基部分的函数,其2-8%PCE的变化知之甚少。因此,分子聚集的特征在于掠入射X射线衍射,并参考了相应的OPV器件的体积特征。在溶液,纯净薄膜和本体异质结(BHJ)薄膜中按顺序对PTB聚合物进行了超快光学瞬态吸收测量。分别了解它们的分子内,供体:供体和供体:受体动力学。在这些研究中,即使没有电子受体也能观察到激子离解。分子内电荷对解离的程度与相应的器件PCE相关。现有的OPV模型中没有解释这一发现。BHJ研究表明,该系统在电子转移到PCBM受体后很长一段时间内就具有分子内聚合物动力学的记忆。基于这些研究,提出了一个模型来解释系统如何在几百皮秒后记住超快信息,以及该过程如何与装饰聚合物片段的侧基相关。这种理解有可能指导未来的OPV设计。

著录项

  • 作者

    Rolczynski, Brian S.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Physical.;Chemistry Polymer.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号