首页> 外文学位 >Further developments in orbit ephemeris derived neutral density.
【24h】

Further developments in orbit ephemeris derived neutral density.

机译:星历的进一步发展衍生出中性密度。

获取原文
获取原文并翻译 | 示例

摘要

There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere.;The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two.;There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level.;The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.
机译:有许多非保守力作用在低地球轨道的卫星上。最主要的也是不确定性最大的一个是大气阻力。大气阻力与大气密度成正比,并且现有的大气密度模型不能准确地模拟大气密度的变化。在这项研究中,精密轨道星历表(POE)被用作最佳轨道确定方案中的输入测量值,以估计对现有大气密度模型的校正。这些估计的校正可以改善人造卫星所受阻力的估计,因此可以改善轨道确定和预测,并可以更好地全面了解地球的高层大气。该工作中使用的最佳轨道确定方案包括使用POE数据使用轨道确定工具套件(ODTK)软件在顺序过滤器/平滑处理过程中进行测量。通过将POE得出的密度估计值与具有挑战性的微型卫星有效载荷(CHAMP)上的加速度计和重力恢复和气候实验(GRACE)上得出的密度进行比较,可以验证其有效性。这些加速度计和GRACE的加速度计密度数据集可从国家练习曲空间中心(CNES)的Sean Bruinsma获得。通过计算POE导出的密度值和加速度计导出的密度值之间的互相关(CC)定量比较大气密度变化趋势,同时通过计算均方根(RMS)比较两个数据集的大小在加速度计得出的密度数据中观察到某些高频密度变化,而在POE得出的密度数据或任何基线密度模型中则没有观察到。与整个昼夜变化相比,这些高频密度变化通常幅度较小。但是,在某些时间段内,例如卫星靠近终结器时,这些变化与昼夜变化在数量级上相同。这些变化在地磁风暴期间和极尖附近也特别普遍。这项工作的目标之一是观察这些未建模的高频变化对轨道传播的影响。为了观察到这种影响,在某些时间段内使用不同的密度数据源作为输入测量值来传播CHAMP和GRACE的轨道(加速度计,POE,HASDM和Jacchia 1971)。使用加速度计得出的密度数据将所得的轨道传播全部与传播进行比较,该数据用作真值。分析RMS和不同传播之间的最大差异,以了解未建模的密度变化对轨道传播的影响。这些结果也与太阳和地磁活动水平进行了归类。用于确定POE的密度估计值的轨道确定方案的主要输入是精密轨道星历文件。该文件包含基于GPS和SLR测量的卫星位置和速度信息。这些文件中包含的值是估计值,因此包含一定程度的错误,通常被认为在5-10厘米左右。这项工作的另一个主要重点是评估在将原始星历表数据文件输入轨道确定方案之前,将不同级别的噪声(0.1 m,0.5 m,1 m,10 m和100 m)添加到噪声中的效果。然后,通过计算数据集之间的CC和RMS值,将所得的每个噪声级别的POE派生密度估计值与加速度计派生密度进行比较。这些结果也被太阳和地磁活动水平归类。

著录项

  • 作者

    Locke, Travis.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.
  • 年度 2012
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号