首页> 外文学位 >High-Speed Dynamics and Vibration of Planetary Gears, Vibration of Spinning Cantilevered Beams, and An Efficient Computational Method for Gear Dynamics.
【24h】

High-Speed Dynamics and Vibration of Planetary Gears, Vibration of Spinning Cantilevered Beams, and An Efficient Computational Method for Gear Dynamics.

机译:行星齿轮的高速动力学和振动,旋转悬臂梁的振动以及齿轮动力学的有效计算方法。

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the dynamics and vibration of high-speed planetary gears, spinning cantilevered beams, and gear pairs.;Chapter 2 investigates the modal property structure of high-speed planetary gears with gyroscopic effects. Three mode types exist, and these are classified as planet, rotational, and translational modes. The properties of each mode type and that these three types are the only possible types are mathematically proven. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.;In Chapter 3, the structured properties of the critical speeds and associated critical speed eigenvectors of high-speed planetary gears are identified and mathematically proven. Numerical results verify the critical speed locations and the stability near these critical speeds. Flutter instabilities occur at extremely high speeds, and these are investigated numerically for each mode type.;Chapter 4 demonstrates unusual gyroscopic system eigenvalue behavior observed in a lumped-parameter planetary gear model. The behaviors include calculation of exact trajectories across critical speeds, uncommon stability features near degenerate critical speeds, and unique stability transitions. These eigenvalue behaviors are not evident in the vast literature on gyroscopic systems.;Chapter 5 investigates eigenvalue sensitivity to model parameters and eigenvalue veering in high-speed planetary gears. The sensitivity of the eigenvalues to model parameters are written in terms of modal kinetic and potential energies. Eigenvalue veering is prominent in planetary gears that have disrupted cyclic symmetry.;In Chapter 6, the single-mode vibrations of high-speed planetary gears are investigated in the rotating carrier-fixed and the stationary inertial reference frames. The properties of the structured planetary gear modes result in gear motions with interesting geometry.;A linear model for the bending-bending-torsional-axial vibration of a spinning cantilever beam with a rigid body attached at its free end is derived in Chapter 7 using Hamilton's Principle. The governing equations of motion are cast in a structured way using extended variables and extended operators. With this structure the equations represent a classical gyroscopic system. Using the extended operator structure, the equations are discretized using Galerkin's method, and subsequently the eigenvalues and mode shapes are calculated for varying rotation speeds.;In Chapter 8, the general Euler-Lagrange equations for gyroscopic continuum are derived from Hamilton's Principle using kinetic, potential, and virtual work expressions with specific functional dependencies typical of gyroscopic continua. These equations are useful in problems with multiple variables, where directly taking variations of the Lagrangian is cumbersome.;In Chapter 9, a finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. (Abstract shortened by UMI.).
机译:这项研究研究了高速行星齿轮,旋转悬臂梁和齿轮副的动力学和振动。第二章研究了具有陀螺效应的高速行星齿轮的模态特性结构。存在三种模式类型,它们分为行星模式,旋转模式和平移模式。每种模式类型的属性以及这三种类型是唯一可能的类型均已通过数学证明。为每种模式类型确定特征值减少的问题。在宽范围的行星架速度上确定示例性高速行星齿轮的特征值。在极高的速度下观察到发散和颤动不稳定性。在第3章中,对高速行星齿轮的临界速度和相关的临界速度特征向量的结构特性进行了识别和数学证明。数值结果验证了临界速度的位置以及这些临界速度附近的稳定性。颤振不稳定性会以极高的速度发生,并且会针对每种模式类型进行数值研究。第4章演示了在集总参数行星齿轮模型中观察到的异常陀螺仪本征值行为。这些行为包括计算临界速度的精确轨迹,接近临界速度退化的罕见稳定性特征以及独特的稳定性转变。这些特征值行为在陀螺系统的大量文献中并不明显。第五章研究了特征值对模型参数的敏感性以及高速行星齿轮的特征值转向。特征值对模型参数的敏感度是根据模态动能和势能来写的。本征值转向在破坏了循环对称性的行星齿轮中很重要。在第6章中,研究了在固定的旋转行星架和静止惯性参考系中高速行星齿轮的单模振动。结构化行星齿轮模式的特性导致齿轮运动具有有趣的几何形状;;第7章使用以下公式推导了悬臂梁的弯曲弯曲扭转轴向振动的线性模型:汉密尔顿原理。使用扩展变量和扩展算符以结构化方式强制控制运动的控制方程。通过这种结构,这些方程式代表了经典的陀螺仪系统。使用扩展算子结构,使用Galerkin方法离散方程式,然后计算出不同转速下的特征值和模态形状;在第8章中,陀螺连续体的通用Euler-Lagrange方程式是从汉密尔顿原理出发利用动力学,电位和虚拟工作表达式,这些函数具有陀螺连续体特有的特定功能依赖性。这些方程在多变量问题中非常有用,在这些变量中直接获取拉格朗日的变化很麻烦。在第9章中,提出了齿轮副动态响应的有限元公式。在集总参数齿轮动力学模型中建立方法之后,将静态解用作有限元振动模型的频域解中的激励。非线性有限元/接触力学公式提供了动态求解中使用的静态解和平均网格刚度的精确计算。动态响应的频域有限元计算与数值积分(时域)有限元动态结果和先前发表的实验结果相比具有很好的对比性。 (摘要由UMI缩短。)。

著录项

  • 作者

    Cooley, Christopher G.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 323 p.
  • 总页数 323
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号