首页> 外文学位 >Flux pinning study of RE barium coper oxide coated conductors for high field magnet applications.
【24h】

Flux pinning study of RE barium coper oxide coated conductors for high field magnet applications.

机译:用于强磁场磁体的稀土钡铜氧化物涂层导体的通量钉扎研究。

获取原文
获取原文并翻译 | 示例

摘要

REBa2Cu3O7-δ (REBCO, RE = rare earth) coated conductor (CC) holds great promise for high field magnet applications owing to its strong irreversibility field (Hirr), low electromagnetic anisotropy (γ2), and high critical current density (Jc). The work of this thesis is tightly related to the development of the funded 32 T, all-superconducting magnet project at the NHMFL. My concern is thus for understanding the optimizing of the working parameters of REBCO CC at low temperatures T, and very high magnetic fields H, focusing on how to enhance Ic and to reduce its angular dependence.;Increasing the active cross-section is a direct and economical strategy to enhance the current-carrying capability for REBCO coated conductors. Unfortunately, the high Jc in thin REBCO layers is seldom sustained in thick layers because of difficulties of thick film growth control. In the presence of strong 3D (pin separation far less than film thickness) pins, a high and thickness-independent (Jc) should result. One of major tasks of this thesis is to explore what are the effective strong 3D pins that develop a high and thickness-independent Jc. High and weak thickness-dependent Jc at 77 K is obtained on most recent coated conductors, and BZO nanorods and RE2O 3 nanoparticles are identified as strong 3D pins contributing to this respectable Jc performance. At 77 K, we found that the strong pinning of BZO nanorods remains at least up to 9 T, whereas the strong pinning of RE2O3 nanoparticles gradually evolves to weak collective pinning as the irreversibility field is approached.;The second principal part of this thesis concentrates on understanding and minimizing the angular dependence of Jc. Our study is based on the following procedure. First, we investigated the angular dependence of Jc (Jc(&thetas;)) in the working condition of the future 32 T all-superconducting magnet, i.e. 4.2 K and high magnetic field up to 31 T. Our work shows that the low temperature Jc(&thetas;) is Ginzburg-Landau-like at low fields and cusp-like towards the ab-plane at high fields. More interestingly, the typically observed Jc c-axis peak of BaZrO3 nanorods (BZO)-containing REBCO at high temperatures disappears at T < 40 K. We observed that J c(H||c) follows well a power law with exponent ≈ 0.5 for coated conductors without BZO nanorods and ≈ 0.7 for coated conductors containing BZO nanorods. More importantly, BZO-containing coated conductors show higher and broader Jc(&thetas;) at least up to 31 T, which is strongly beneficial to high field magnet applications. Finally, we performed Jc(&thetas;) study over a broad temperature domain, 4.2 K to Tc and magnet fields up to 31 T. We found that weak uncorrelated pinning dominates the low temperature Jc. It raises and broadens Jc in the full angular range. We conclude that BZO nanorods induce dense random defects, like oxygen vacancies, atomic disorder etc., which can exert a large pinning effect at low temperatures where thermal fluctuations are small. Near the ab-plane there is clear evidence for strong correlated defects, which we deduce is due to intrinsic pinning by the Cu-O charge reservoir layers.;The last section discusses the pinning design relevant to coated conductors. Two types of thin films made by pulsed laser deposition (PLD) with well designed defects were studied: one shows Y2O3 precipitates and a high strain which also generates dense point pinning; the second one presents dense stacking faults. The main conclusion is that Jc(&thetas;) can be modulated by tailoring the strain introduced by the mismatch between second phases and REBCO layer. Intrinsic pinning governs Hirr (H||ab), and stacking faults govern Jc(H||ab) and enhance Hirr(H|| ab) at T ≥ 40 K.;The thesis contains 8 chapters. The first chapter introduces the background and motivation of this work. Chapter 2 presents thickness dependence of Jc studies. Chapter 3 through chapter 6 present Jc(H, T, &thetas;) characterization and pinning studies on REBCO coated conductors. Chapter 7 presents the pinning mechanisms found in PLD thin films grown with designed pinning structures. The summary and future work is presented in chapter 8.
机译:REBa2Cu3O7-δ(REBCO,RE =稀土)涂层导体(CC)由于其不可逆性强(Hirr),低电磁各向异性(γ2)和高临界电流密度(Jc),在高磁场磁体应用方面具有广阔的前景。本文的工作与NHMFL资助的32 T全超导磁体项目的开发紧密相关。因此,我的关注点在于了解如何在低温T和非常高的磁场H下优化REBCO CC的工作参数,重点在于如何增强Ic并降低其角度依赖性。增加有效截面是直接的和经济的策略来增强REBCO涂层导体的载流能力。不幸的是,由于难以控制厚膜的生长,薄REBCO层中的高Jc很难在厚层中维持。如果存在牢固的3D(引脚间距远小于薄膜厚度)引脚,则会产生高且与厚度无关的(Jc)。本论文的主要任务之一是探索什么是有效的坚固3D引脚,这些引脚可以形成高且与厚度无关的Jc。在最新的涂层导体上可获得77 K的高和弱于厚度的Jc,BZO纳米棒和RE2O 3纳米颗粒被认为是强3D引脚,有助于实现这种可观的Jc性能。在77 K时,我们发现BZO纳米棒的强固定至少保持到9 T,而RE2O3纳米粒子的强固定随着接近不可逆场而逐渐演化为弱的集体固定。了解和最小化Jc的角度依赖性。我们的研究基于以下过程。首先,我们研究了在未来的32 T全超导磁体(即4.2 K和高达31 T的高磁场)的工作条件下Jc(Jc(θ))的角度依赖性。我们的工作表明,低温Jc (&thetas;)在低场时像金兹堡-兰道,而在高场时像尖顶朝ab平面。更有趣的是,高温下通常观察到的含BaZrO3纳米棒(BZO)的REBCO的Jc c轴峰在T <40 K时消失。我们观察到J c(H || c)的幂定律很好,指数为&ap;不含BZO纳米棒和&ap;的涂层导体为0.5 0.7,用于包含BZO纳米棒的涂层导体。更重要的是,含BZO的涂层导体的Jc(θ)至少在31 T以下才更高和更宽,这对强磁场应用非常有帮助。最后,我们在4.2 K到Tc的宽温度范围和高达31 T的磁场上进行了Jc(θ)研究。我们发现弱不相关的钉扎作用主导着低温Jc。它在整个角度范围内提高和扩大了Jc。我们得出的结论是,BZO纳米棒会引起致密的随机缺陷,例如氧空位,原子无序等,在热波动小的低温下会产生很大的钉扎效应。在ab平面附近,有明显的证据表明存在强烈的相关缺陷,我们推断这是由于Cu-O电荷存储层固有的钉扎作用所致。最后一部分讨论了与涂层导体有关的钉扎设计。研究了两种由脉冲激光沉积(PLD)制成的薄膜,这些薄膜具有设计得当的缺陷:一种显示Y2O3沉淀和高应变,该应变还产生密集的点钉扎;第二个是密集的堆垛层错。主要结论是,可以通过调整第二相和REBCO层之间的不匹配引入的应变来调制Jc(θ)。在T≥40 K时,固有钉扎控制Hirr(H || ab),而堆垛层错控制Jc(H || ab)并增强Hirr(H || ab)。本文共分八章。第一章介绍了这项工作的背景和动机。第2章介绍了Jc研究的厚度依赖性。第3章至第6章介绍了REcco涂层导体的Jc(H,T,thetas;)表征和钉扎研究。第7章介绍了采用设计的钉扎结构生长的PLD薄膜中的钉扎机制。总结和将来的工作在第8章中介绍。

著录项

  • 作者

    Xu, Aixia.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号