首页> 外文学位 >Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts.
【24h】

Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts.

机译:由煤refuse石和煤燃烧副产物组成的高耐久性二氧化硅-氧化铝基胶凝材料的性能和机理。

获取原文
获取原文并翻译 | 示例

摘要

Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based cementitious material not only meets EPA requirements but also shows several advantages in industrial application.
机译:作为工业固体废物库存的煤refuse石和燃烧副产物已成为对环境的巨大威胁。回收是一种实用的解决方案,可以通过活化利用这种大量的固体废物来代替普通的硅酸盐水泥。本文的主要目标是研究和开发一种新的基于二氧化硅-氧化铝的胶凝材料,该材料主要使用煤refuse石作为成分,对于耐用建筑,矿山回填,矿山密封和废物处置稳定化应用是理想的。这种新材料是普通波特兰水泥的环保替代品。新材料的主要成分是煤refuse石和其他煤废物,包括煤泥和煤燃烧产物(CCP)。与传统的水泥生产相比,这项新技术的成功开发可以潜在地节省能源,减少温室气体排放,回收大量煤炭废料并显着降低生产成本。已经进行了系统的研究,以寻求用于提高相对惰性的固体废煤垃圾的火山灰反应性的最佳解决方案,以提高建筑和建筑材料的利用效率和经济效益。结果表明,在20°C至950°C范围内的热活化温度显着提高了煤refuse石的可加工性和火山灰性能。最佳激活条件是在30至60分钟的时间内处于700°C至800°C之间。微量分析表明,改进的火山灰反应性通过在热活化过程中破坏结晶结构,有助于从惰性铝硅酸盐矿物的一部分中生成无定形物质。在煤refuse石中,高岭石在550°C时开始转移到偏高岭土中,亚氯酸盐矿物在750°C时消失,白云母2M1逐渐脱羟基成为白云母HT。此外,这项研究检查了该技术的环境可接受性和经济可行性,并发现这种基于二氧化硅-氧化铝的胶凝材料不仅符合EPA要求,而且在工业应用中也显示出一些优势。

著录项

  • 作者

    Yao, Yuan.;

  • 作者单位

    University of the Pacific.;

  • 授予单位 University of the Pacific.;
  • 学科 Chemistry Analytical.;Engineering Materials Science.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号