首页> 外文学位 >Microstructure evolution during processing of dual phase and TRIP steels.
【24h】

Microstructure evolution during processing of dual phase and TRIP steels.

机译:双相和TRIP钢加工过程中的微观组织演变。

获取原文
获取原文并翻译 | 示例

摘要

In this study, a systematic experimental study on the microstructure evolution for a dual phase and a TRIP steel during intercritical annealing and intermediate temperature holding (for the TRIP steel) was conducted. In the reheating stage, recrystallization occurs for the cold-rolled materials, which were characterized by the microhardness and metallography. A mathematical description of the recrystallization kinetics can be made using the Avrami equation. It was found that for dual phase steel, ferrite recrystallization may extend into the austenite formation region thus overlapping with the austenite formation reaction. While for the TRIP steel, which has faster recrystallization rates, the recrystallization and austenite formation processes are sequential for the processing parameters (i.e. heating rates of 1, 10 and 100°C/s) considered in this study.; In the intercritical annealing stage, the materials were subjected to both continuous and ramp plus isothermal hold heat treatments with various heating rates. The kinetics of austenite formation was determined by dilatometry. Very significant effects of heating rate on both the fraction of austenite and its spatial distribution and morphology were observed. The material behaviour during austenite formation can be understood by considering the effect of heating rate on the nucleation and growth of austenite. The basic trends can be rationalized by the competing mechanisms for nucleation and growth of austenite and how these depend on the starting microstructure (i.e. spatial distribution of pearlite and the degree of ferrite recrystallization). The interaction between ferrite recrystallization and austenite formation is strong and it affects not only the kinetics of austenite formation but also the spatial distribution and morphology of austenite.; A new approach using neutron Bragg-edge transmission (BET) was applied to studying the austenite decomposition which occurs when the material is cooled to the intermediate hold stage (i.e. during processing of TRIP steel). The neutron BET technique allows for the analysis of the evolution of volume fraction for the participating phases; and also reveals unique, ' in-situ' carbon redistribution information which may be derived from the change in the lattice parameter. The volume fraction results were compared to the results from traditional XRD, dilatometry and optical metallography. Excellent agreement between these results was observed. In addition, carbon enrichment in the austenite phase during bainite transformation is clearly observed from this technique.
机译:在这项研究中,对双相和TRIP钢在临界退火和中间温度保持期间(对于TRIP钢)的组织演变进行了系统的实验研究。在再加热阶段,冷轧材料发生再结晶,其特征在于显微硬度和金相。可以使用Avrami方程对重结晶动力学进行数学描述。已发现对于双相钢,铁素体再结晶可延伸到奥氏体形成区域中,从而与奥氏体形成反应重叠。对于TRIP钢,其再结晶速度更快,但本研究中考虑的工艺参数(即加热速度分别为1、10和100°C / s)的重结晶和奥氏体形成过程是相继的。在临界退火阶段,对材料进行连续加热和斜波加等温保持热处理,并采用不同的加热速率。奥氏体形成动力学由膨胀法确定。观察到加热速率对奥氏体分数及其空间分布和形态都有非常显着的影响。通过考虑加热速率对奥氏体成核和生长的影响,可以理解奥氏体形成过程中的材料行为。基本趋势可以通过奥氏体成核和长大的竞争机制以及它们如何取决于起始显微组织(即珠光体的空间分布和铁素体再结晶程度)来合理化。铁素体再结晶与奥氏体形成之间的相互作用很强,不仅影响奥氏体形成的动力学,而且影响奥氏体的空间分布和形态。一种使用中子布拉格边缘传输(BET)的新方法被用于研究奥氏体分解,当材料冷却到中间保持阶段时(即在TRIP钢的加工过程中),奥氏体分解发生。中子BET技术可以分析参与相的体积分数的演变。并揭示了独特的“原位”碳再分布信息,该信息可能来自晶格参数的变化。将体积分数结果与传统XRD,膨胀法和光学金相学的结果进行比较。这些结果之间观察到极好的一致性。此外,从该技术可以清楚地观察到贝氏体相变期间奥氏体相中的碳富集。

著录项

  • 作者

    Huang, Jin.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号