首页> 外文学位 >DNA Mechanics and Transcriptional Regulation in the Escherichia coli lac operon.
【24h】

DNA Mechanics and Transcriptional Regulation in the Escherichia coli lac operon.

机译:大肠杆菌lac操纵子中的DNA力学和转录调控。

获取原文
获取原文并翻译 | 示例

摘要

Many gene regulatory motifs in both prokaryotes and eukaryotes involve physical manipulations of the genetic material, often on length scales short enough that the mechanical properties of the DNA significantly impact gene expression. One class of such manipulations, called "action at a distance", includes transcription factor-mediated DNA looping, in which a binding site some distance away on the DNA is brought into close proximity with the transcription machinery at the promoter. DNA looping is a key component of several important regulatory systems in bacteria, and is crucial to the combinatorial control that is common at eukaryotic promoters regulated by more transcription factors than can physically bind adjacent to the promoter. Here we use a prototypical DNA looping protein, the Lac repressor from E. coli, to explore questions regarding the role of DNA mechanics in DNA looping and combinatorial control, particularly concerning the role of sequence flexibility in short-length-scale looping. We combine a statistical mechanical model of looping by the Lac repressor with a single-molecule technique called tethered particle motion that allows us to quantify this looping, and the systematic tuning of four biologically relevant and experimentally tractable parameters: loop length, loop sequence, repressor-DNA affinity, and repressor concentration. We show that this combination is a powerful approach to measuring repressor-DNA binding affinities and sequence-dependent DNA flexibilities in a way that is orthogonal, and therefore complementary, to conventional ensemble assays. Our results show that the sequence dependence to looping is more complicated than has been observed in other contexts, suggesting that "sequence flexibility" as a general term is misleading, and, we argue, that the measurement of sequence flexibilities depend more strongly than previously appreciated on the shape of the deformation used to make the measurement. Finally, we present preliminary results with a more complicated system that is a case study for broader issues in combinatorial control, and a new hidden Markov model approach, based on variational Bayesian inference, to analyze these more complicated systems, which we hope will allow more precise dissections of, and more robust extraction of kinetic parameters from, tethered particle motion assays.
机译:原核生物和真核生物中的许多基因调控基序都涉及遗传物质的物理操纵,通常其长度尺度短得足以使DNA的机械特性显着影响基因表达。一类称为“远距离作用”的操纵包括转录因子介导的DNA环化,其中DNA上相距一定距离的结合位点与启动子处的转录机制非常接近。 DNA环化是细菌中几个重要调控系统的关键组成部分,并且对于组合控制至关重要,该组合控制在真核启动子中很常见,该启动子受比与启动子相邻的物理结合更多的转录因子调控。在这里,我们使用一种典型的DNA环化蛋白,即大肠杆菌的Lac阻遏物,来探索有关DNA力学在DNA环化和组合控制中的作用的问题,尤其是有关序列灵活性在短长度环化中的作用。我们将Lac阻遏物循环的统计力学模型与称为束缚粒子运动的单分子技术相结合,该技术使我们能够量化该循环,并系统地调节了四个生物学上相关且在实验上易处理的参数:环长度,环序列,阻遏物-DNA亲和力和阻遏物浓度。我们表明,这种组合是一种以正交方式(因此与传统总体检测方法互补)来测量阻遏物-DNA结合亲和力和序列依赖性DNA柔韧性的有效方法。我们的结果表明,对循环的序列依赖性比在其他情况下观察到的更为复杂,这表明“序列灵活性”作为一般术语具有误导性,并且我们认为,序列灵活性的度量比以前的理解更强烈地依赖用于进行测量的变形的形状。最后,我们给出了一个更复杂的系统的初步结果,该系统是针对组合控制中更广泛问题的案例研究,并且基于变分贝叶斯推理,一种新的隐马尔可夫模型方法可以分析这些更复杂的系统,我们希望这将允许更多系留粒子运动分析的精确解剖,并更可靠地提取动力学参数。

著录项

  • 作者

    Johnson, Stephanie.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号