首页> 外文学位 >Modeling carbon sequestration in transition zone to optimize storage potential.
【24h】

Modeling carbon sequestration in transition zone to optimize storage potential.

机译:为过渡区的碳固存建模,以优化存储潜力。

获取原文
获取原文并翻译 | 示例

摘要

Shallow aquifers are potential candidates for carbon sequestration because of their wide distribution and low injection cost. Injected CO2 in a shallow region segregates into two zones according to CO 2 phases within the initial reservoir pressure and the maximum bottom hole pressure: gas zone and transition zone. Transition zone is a better option because of favorable CO2 properties. This work investigated the CO2 storage potential in transition zone using the compositional simulator CMG-GEM and a design of experiment software iSIGHT. First, it addressed the basic characteristics of CO2 sequestration in transition zone, and then modeled CO2 injection with simultaneous water withdrawal as a necessary means for improving CO2 storage capacity. Next, it compared the difference between sequestration in transition zone and supercritical zone. Finally, it optimized the storage potential of transition zone from engineering aspects. The simulation results show that transition zone is very promising with water withdrawal. Water withdrawal greatly improves CO 2 storage capacity and injectivity. A shallow aquifer in transition zone provides considerable storage capacity, better storage volume efficiency, and a higher portion of stable CO2 than a deep aquifer in supercritical zone. High storage capacity can be obtained when the aquifer is thick with high porosity, high permeability, low salinity, medium anisotropy, and medium heterogeneity. Within 600-1000 m, storage capacity is affected primarily by thickness and porosity, then salinity. The less significant effect of depth indicates the great potential of transition zone for CO2 sequestration under favorable conditions. Pulse injection provides better storage capacity and efficiency than continuous injection and water alternating gas. A small pattern size should be considered at low rates, while a large pattern size is preferred at high rates.
机译:浅层含水层因其分布范围广且注入成本低而成为固碳的潜在候选者。根据初始储层压力和最大井底压力内的CO 2相,在浅区注入的CO2分为两个区域:气体区域和过渡区域。过渡区是一个更好的选择,因为它具有良好的CO2特性。这项工作使用成分模拟器CMG-GEM和实验软件iSIGHT的设计研究了过渡带中的CO2储存潜力。首先,它解决了过渡带中二氧化碳封存的基本特征,然后模拟了同时注入水作为提高二氧化碳存储能力的必要手段的二氧化碳注入。接下来,它比较了过渡区和超临界区的固存差异。最后,从工程方面优化了过渡带的存储潜力。仿真结果表明,过渡带具有很好的取水潜力。抽水大大提高了CO 2的储存能力和注入能力。与超临界区中的深层含水层相比,过渡区中的浅层含水层提供了可观的存储容量,更好的存储体积效率以及较高的稳定二氧化碳含量。当含水层较厚,孔隙率高,渗透率高,盐度低,介质各向异性和介质异质性高时,可以获得较高的储存能力。在600-1000 m范围内,存储能力主要受厚度和孔隙率的影响,然后受盐度的影响。深度影响较小,表明在有利条件下过渡带对固存二氧化碳的潜力很大。脉冲注入比连续注入和水交替气体提供更好的存储容量和效率。在低速率下应考虑较小的图案尺寸,而在高速率下应优先选择较大的图案尺寸。

著录项

  • 作者

    Yang, Fang.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号