首页> 外文学位 >Computational prediction of genome-wide microRNA targets and functions.
【24h】

Computational prediction of genome-wide microRNA targets and functions.

机译:全基因组microRNA靶标和功能的计算预测。

获取原文
获取原文并翻译 | 示例

摘要

MiRNA is a 19 to 25 nucleotides long non-coding RNA that has been discovered to repress transcription and/or protein translation of hundreds of genes by binding to the complementary sites in the 3' Untranslated Region (UTR) of target genes (Bartel 2004; Yue et al. 2009; Yue et al. 2012). MiRNAs are shown to play important roles in many biological processes including cell development, stress responses and viral infection (Grey et al. 2008). Predicting the miRNA targets, understanding the functions and regulatory mechanisms of miRNA is one of the most active areas of research; such understanding will help us to identify new therapeutic targets for effective treatment of various diseases (Alvarez-Garcia and Miska 2005; Lu et al. 2008).;Identifying targeting genes that miRNAs regulate is important first step for understanding miRNA's specific biological functions. First of all, a two-stages SVM based algorithm, SVMicrO (Liu et al. 2008), was proposed for target prediction based on sequence information. A large amount of positive and negative targets are carefully derived from the most up-to-date literatures to build the training and evaluating dataset. Based on the known statistical characteristics as well as our own understanding of miRNA:Target interactions, 113 and 30 novel features are extracted for constructing Site-SVM and UTR-SVM respectively. mRMR (minimum Redundancy Maximum Relevance) (Ding and Peng 2005) and SFS (sequential forward search) (Peng et al. 2005) are used for feature selection. Sample weight and class weight are introduced into SVMicrO to deal with the imbalanced dataset. To validate the performance, SVMicrO are evaluated based on the results of high confidence target identification experiments and compared with several other popular algorithms. The results show that the SVMicrO can produce better prediction performance.;Secondly, we considered the integration of microarray data with sequence binding information for target prediction. Particularly, a logistic regression model is first used to map SVMicrO prediction result to the probability space and then a Gaussian Mixture Model, whose parameters are estimated by VBEM algorithm (Bernardo et al. 2003; Beal 2003), is constructed to model gene expression profiling data. The evaluation results indicate that the proposed algorithm, that integrates two types of information, outperforms sequence-based prediction and prediction based expression data alone.;Thirdly, a Bayesian decision fusion approach was developed for miRNA target prediction (Yue et al. 2010). Since different existing algorithms rely on different features and classifiers, there is a poor agreement between the results of different algorithms. To benefit from the advantages of different algorithms, we proposed an algorithm called BCmicrO that combines the prediction of different algorithms with Bayesian Network. BCmicrO was evaluated in training data and tested by the proteomic data. The results show that BCmicrO improves both the sensitive and the specificity of each individual algorithm.;In the end, to understand the functions of miRNAs, we proposed a SVM based algorithm - PathMicrO that elucidates the miRNA function by predicting the miRNA regulated pathways (Yue, Chen, Gao, and Huang 2010). PathMicrO combines the sequence-level target predictions with the gene expression profiling from the miRNA transfection experiments. The performance of PathMicrO is evaluated with cross-validation using a careful constructed training data, two independent testing data and two miRNAs with known functions. PathMicrO is compared with another popular miRNA function prediction algorithm - SigTerms (Creighton et al. 2008). PathMicrO attains 31% more Area under the curve (AUC) of ROC curve on the training data. On two independent testing data, PathmicrO's ROC increase 32.54% and 40.72%. When PathMicrO is tested with known functions, PathMicrO predicts 200% and 66% more known functions in two miRNAs on the top 40 predictions compared to SigTerms.
机译:MiRNA是一种19至25个核苷酸长的非编码RNA,已发现通过与靶基因3'非翻译区(UTR)中的互补位点结合来抑制数百种基因的转录和/或蛋白质翻译(Bartel 2004; Yue等,2009; Yue等,2012)。 MiRNA在许多生物学过程中发挥重要作用,包括细胞发育,应激反应和病毒感染(Grey等,2008)。预测miRNA靶标,了解miRNA的功能和调控机制是最活跃的研究领域之一;这种理解将帮助我们确定有效治疗各种疾病的新治疗靶点(Alvarez-Garcia和Miska 2005; Lu等2008)。识别miRNA调控的靶向基因是了解miRNA特定生物学功能的重要第一步。首先,提出了一种基于SVM的两阶段算法SVMicrO(Liu等,2008),用于基于序列信息的目标预测。从最新文献中仔细得出大量积极和消极目标,以建立训练和评估数据集。基于已知的统计特征以及我们对miRNA:Target相互作用的理解,分别提取了113个和30个新颖特征来构建Site-SVM和UTR-SVM。 mRMR(最小冗余最大相关性)(Ding和Peng,2005)和SFS(顺序正向搜索)(Peng等,2005)用于特征选择。将样本权重和类权重引入SVMicrO中以处理不平衡的数据集。为了验证性能,根据高置信度目标识别实验的结果对SVMicrO进行了评估,并与其他几种流行算法进行了比较。结果表明,SVMicrO可以产生更好的预测性能。其次,我们考虑了将微阵列数据与序列结合信息整合在一起进行目标预测。特别是,首先使用逻辑回归模型将SVMicrO预测结果映射到概率空间,然后构建其参数通过VBEM算法估计的高斯混合模型(Bernardo等,2003; Beal 2003),以对基因表达谱进行建模。数据。评估结果表明,该算法融合了两种类型的信息,分别胜过基于序列的预测和仅基于预测的表达数据。第三,开发了一种用于miRNA目标预测的贝叶斯决策融合方法(Yue等,2010)。由于不同的现有算法依赖于不同的特征和分类器,因此不同算法的结果之间的一致性差。为了利用不同算法的优势,我们提出了一种称为BCmicrO的算法,该算法将不同算法的预测与贝叶斯网络相结合。 BCmicrO在训练数据中进行了评估,并通过蛋白质组学数据进行了测试。结果表明BCmicrO可以提高每种算法的灵敏性和特异性。 ,Chen,Gao,and Huang 2010)。 PathMicrO将序列级靶标预测与miRNA转染实验中的基因表达谱相结合。使用精心构建的训练数据,两个独立的测试数据和两个具有已知功能的miRNA,通过交叉验证评估PathMicrO的性能。将PathMicrO与另一种流行的miRNA功能预测算法SigTerms(Creighton等人,2008)进行了比较。在训练数据上,PathMicrO的ROC曲线的曲线下面积(AUC)增加31%。根据两个独立的测试数据,PathmicrO的ROC增长了32.54%和40.72%。与已知的功能一起测试PathMicrO时,与SigTerm相比,PathMicrO预测前40个预测中的两个miRNA的已知功能分别多200%和66%。

著录项

  • 作者

    Yue, Dong.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号