首页> 外文学位 >Implementation of wavelet based decomposition and reconstruction of an image using TMS320C6701.
【24h】

Implementation of wavelet based decomposition and reconstruction of an image using TMS320C6701.

机译:使用TMS320C6701实现基于小波的分解和图像重构。

获取原文
获取原文并翻译 | 示例

摘要

The discrete wavelet transform provides sufficient information both analysis and synthesis of the original image with a significant reduction in the computation time. There are two approaches for working on the above algorithm, one being by using two dimensional filters and the other one by using separable transforms that can be implemented using a one-dimensional filter on the rows first and then on the columns. In this research, we have implemented wavelet decomposition and reconstruction using a one-dimensional transform applied on the rows first and then the columns. For an N x M image size, we filter each row and then column with the analysis pair of low-pass and high-pass filters and down sample successively to obtain four bands after decomposition. Later, during image reconstruction, we up sample and filter each column and then row with a pair of synthesis low pass and high pass filters to obtain the original image size. This algorithm has been implemented in real-time by using the floating-point processor TMS320C6701 chip manufactured by Texas Instruments (TI) that is widely used for image processing applications. The wavelet transform has become the most powerful tool for still image analysis. Yet there are many parameters within a wavelet analysis and synthesis that govern the quality of the image. In this paper, we discuss the wavelet decomposition and reconstruction strategies for a two-dimensional signal and their implications on the reconstruction of the image. A pool of grey scale images has been wavelet transformed using a set of bi-orthogonal filters (wavelet filter bank) that undergoes the decomposition and reconstruction process.
机译:离散小波变换提供了足够的信息来分析和合成原始图像,同时大大减少了计算时间。有两种方法可用于上述算法,一种方法是使用二维滤波器,另一种方法是使用可分离的变换,可以使用一维滤波器首先在行上然后在列上实现。在这项研究中,我们已经通过先对行然后对列进行一维变换来实现小波分解和重构。对于N x M图像大小,我们用分析对的低通和高通滤波器对每一行和每一列进行滤波,然后对样本进行连续下采样以获得分解后的四个波段。后来,在图像重建期间,我们对每个列进行采样和滤波,然后使用一对合成低通和高通滤波器对行进行滤波,以获得原始图像尺寸。通过使用广泛用于图像处理应用程序的德州仪器(TI)生产的浮点处理器TMS320C6701芯片,可以实时实现此算法。小波变换已成为静止图像分析的最强大工具。然而,小波分析和合成中有许多参数可以控制图像质量。在本文中,我们讨论了二维信号的小波分解和重构策略及其对图像重构的影响。灰度图像池已使用一组经过分解和重构过程的双正交滤波器(小波滤波器组)进行了小波变换。

著录项

  • 作者

    Kulkarni, Sunil Ashok.;

  • 作者单位

    Texas A&M University - Kingsville.;

  • 授予单位 Texas A&M University - Kingsville.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2004
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号