首页> 外文学位 >Microfluidic Advantage: Novel Techniques for Protein Folding and Oxygen Control in Cell Cultures.
【24h】

Microfluidic Advantage: Novel Techniques for Protein Folding and Oxygen Control in Cell Cultures.

机译:微流体优势:细胞培养中蛋白质折叠和氧气控制的新技术。

获取原文
获取原文并翻译 | 示例

摘要

The young field of microfluidics has been growing due to its utility in chemical and biological applications. Microfluidic devices can be rapidly and inexpensively fabricated from silicone elastomers, making them ideal for prototyping and subsequent production. Further, the behavior of fluid flows in micrometer-diameter channels can be accurately predicted -- due to the properties of laminar flow and purely diffusive mixing -- decreasing experimental uncertainties, while allowing access to a wide range of experiments impossible with traditional methods. The projects presented here fall into two separate areas of biophysics, although they are all facilitated by microfluidics.;Chapter 2 deals with the control of the gas content in the medium of cell cultures. This is an important consideration, as the oxygen concentration, [O2], available to cells has been shown to affect their metabolism, growth, and gene expression. The first project is a microfluidic chemostat supplying nine different [O2] to bacteria growing in chambers beneath the gas channels. Here, we compared the growth rates of E. coli growing at nine different [O2] simultaneously. Section 2.2 introduces a multi-channel, computer-controlled gas mixer that can provide up to ten arbitrary gas mixtures to a microfluidic device. Finally, Section 2.3 describes gas control strips for use with mammalian cell cultures in standard multiwell culture plates. These gas control strips allow cell culture media in different rows of wells to contain different [O2].;Chapter 3 describes a novel system to rapidly heat and cool a small volume of solution of biological macromolecules using time-controlled deposition of heat into a small volume with a focused infrared laser beam. By fluorescently labeling the molecules, their conformational changes due to temperature shifts can be observed. This system improves the time resolution of the cooling transition over traditional methods by at least two orders of magnitude, down to one microsecond. Further, the temperature change from the laser heating pulse is several times larger than with other techniques. We used this system to measure the kinetics of fast DNA hairpin folding and unfolding under varying salt concentrations.
机译:由于其在化学和生物应用中的实用性,微流体的年轻领域一直在增长。微流体装置可以快速,廉价地由有机硅弹性体制成,使其成为原型设计和后续生产的理想选择。此外,由于层流和纯扩散混合的特性,可以精确预测微米直径通道中流体的流动行为,从而减少了实验不确定性,同时允许进行传统方法无法进行的大量实验。尽管所有这些都由微流体技术推动,但这里介绍的项目属于生物物理的两个独立领域。第二章介绍了细胞培养介质中气体含量的控制。这是一个重要的考虑因素,因为已证明细胞可获得的氧浓度[O2]影响其代谢,生长和基因表达。第一个项目是微流体化学恒温器,可为在气体通道下方腔室内生长的细菌提供九种不同的[O2]。在这里,我们比较了同时在9种不同[O2]下生长的大肠杆菌的生长速率。第2.2节介绍了一种多通道,计算机控制的气体混合器,该混合器可以向微流体设备提供多达十种的任意气体混合物。最后,第2.3节介绍了用于标准多孔培养板中哺乳动物细胞培养的气体控制条。这些气体控制条允许孔的不同行中的细胞培养基包含不同的[O2]。第3章介绍了一种新颖的系统,该系统使用时间控制的热量沉积到小分子中,快速加热和冷却少量的生物大分子溶液。聚焦红外激光束。通过荧光标记分子,可以观察到由于温度变化引起的构象变化。与传统方法相比,该系统将冷却过渡的时间分辨率提高了至少两个数量级,低至一微秒。此外,来自激光加热脉冲的温度变化是其他技术的几倍。我们使用该系统来测量在不同盐浓度下快速DNA发夹折叠和展开的动力学。

著录项

  • 作者

    Polinkovsky, Mark E.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号