首页> 外文学位 >Uncertainty management in the analysis and optimization of multiscale composite materials.
【24h】

Uncertainty management in the analysis and optimization of multiscale composite materials.

机译:多尺度复合材料分析和优化中的不确定性管理。

获取原文
获取原文并翻译 | 示例

摘要

Analytical and computational modeling is at the very core of designing high performance composite structural systems for aerospace applications. The behavioral response available from such models is used to provide the 'what if' input to the design process. There is concern that inherent modeling errors, if not quantified appropriately, can introduce significant deviations in the behavior of the physical system from predicted values. Composite structures, with distinctly different failure modes and patterns from homogeneous material systems, are particularly vulnerable to this deficiency. Failure in composite structures is typically obtained from mechanistic models of damage that span length scales ranging from the material constituent level to component or macro structural level. Each level of modeling has uncertainties which influence the behavioral response used to guide design decisions.Thus, a major objective of this thesis is a systematic examination of mechanistic models of damage to identify the major sources of uncertainty in their predictive capabilities. Of specific interest in this study will be the adaptation of the transformation field analysis (TFA) approach to model the onset and progression of damage in composite materials at various length scales. The presence of uncertainties at multiple length scales requires development of models that describe the propagation of uncertainty across the scales. As shown in this thesis, the quantification of uncertainty in a multiscale analysis poses an attendant cost for computational design. To overcome this, approximate models for stress response based on Polynomial Chaos Expansion (PCE) and Support Vector Machine (SVM) are shown to reduce the computational cost. Also, a Radial Basis Function (RBF) based neural network is shown to provide a computationally efficient and high fidelity approximation for the strain response from the TFA model.This research also seeks to develop a consistent methodology for modeling uncertainty and risk in the simulation-based optimal design of composite structural systems. In a deterministic design approach, these models are linked to formal mathematical methods of optimization. Such an approach, however, is deemed inadequate, as it fails to account for the various sources of uncertainty in predictive capabilities of the behavior model. A key aspect of this research was to develop a framework to represent the risk related to various failure modes, not all of which are equally critical to system integrity. This framework, referred to as state transition approach, has been used to develop rational metrics for optimizing system performance, with focus on characterization and management of uncertainties over the operational life of the structural system. A "system effectiveness" metric is proposed to gauge the life of a composite system based on the failure modes predicted by the TFA model. The inclusion of this metric as part of a non-deterministic optimization framework is also pursued and results indicate the efficacy of proposed technique over conventional methods.This research also focuses on utilizing the hierarchical nature of the multiscale TFA models for damage initiation and propagation. The adaptation of multiscale models in optimization is especially amenable to a multilevel decomposition based design strategy. In this context, this research examines how uncertainty can be quantified and propagated in generic hierarchical structures for the design of risk tolerant systems.Major contributions of the research include (a) new approximation strategies to include the effects of uncertainty in a computationally efficient predictive model, (b) rational metrics for quantifying performance with focus on characterization and management of uncertainties over the operational life of the structural system, and, (c) a novel decomposition based optimization methodology for handling uncertainty in the optimal design of hierarchical structural systems.
机译:分析和计算模型是设计用于航空航天应用的高性能复合结构系统的核心。可从此类模型获得的行为响应用于向设计过程提供“假设”输入。令人担忧的是,固有的建模误差(如果未适当量化)会导致物理系统的行为与预测值发生重大偏差。具有与均质材料系统明显不同的失效模式和模式的复合结构特别容易受到这种缺陷的影响。复合材料结构的破坏通常是从损伤的机械模型获得的,该损伤模型的长度范围从材料成分级别到部件或宏观结构级别。建模的每个级别都有不确定性,这些不确定性会影响用于指导设计决策的行为响应。因此,本论文的主要目的是系统地研究损伤机理模型,以识别其预测能力的主要不确定性来源。在这项研究中,特别感兴趣的将是转换场分析(TFA)方法的改编,以模拟各种长度尺度下复合材料损伤的发生和进展。在多个长度尺度上存在不确定性,需要开发模型来描述不确定性在整个尺度上的传播。如本论文所示,多尺度分析中不确定性的量化为计算设计带来了伴随的成本。为了克服这个问题,显示了基于多项式混沌扩展(PCE)和支持向量机(SVM)的应力响应近似模型,以降低计算成本。此外,研究表明,基于径向基函数(RBF)的神经网络可为TFA模型中的应变响应提供计算效率高且逼真度高的近似值。本研究还寻求开发一种一致的方法来模拟仿真中的不确定性和风险,基于复合结构系统的优化设计。在确定性设计方法中,这些模型与优化的形式化数学方法相关联。但是,这种方法被认为是不适当的,因为它无法说明行为模型的预测能力中的各种不确定性来源。这项研究的一个关键方面是开发一个框架来表示与各种故障模式相关的风险,但并非所有故障模式都对系统完整性同样重要。这个被称为状态转换方法的框架已被用于开发合理的度量标准,以优化系统性能,重点是对结构系统运行寿命内不确定性的表征和管理。提出了一种“系统有效性”度量,以基于TFA模型预测的故障模式来衡量复合系统的寿命。还寻求将该指标作为非确定性优化框架的一部分,其结果表明了所提出技术相对于常规方法的有效性。本研究还着眼于利用多尺度TFA模型的层次性质进行破坏的发起和传播。多尺度模型在优化中的适应性尤其适合于基于多级分解的设计策略。在此背景下,本研究探讨了如何在通用分层结构中量化和传播不确定性,以设计风险承受系统。研究的主要贡献包括:(a)新的近似策略,将不确定性的影响纳入计算有效的预测模型中;(b)量化性能的合理指标,重点是对结构系统在整个使用寿命内的不确定性进行表征和管理,以及(c)一种新颖的基于分解的优化方法,用于处理分层结构系统的最佳设计中的不确定性。

著录项

  • 作者

    Sakalkar, Varun.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号