首页> 外文学位 >Electrode geometry effects on the collection efficiency of submicron and ultrafine dust particles in wire-plate electrostatic precipitators.
【24h】

Electrode geometry effects on the collection efficiency of submicron and ultrafine dust particles in wire-plate electrostatic precipitators.

机译:电极的几何形状会影响线板静电除尘器中亚微米和超细灰尘颗粒的收集效率。

获取原文
获取原文并翻译 | 示例

摘要

Recent interest in emission control of fine particulate matter has resulted from scientific studies on the effect of fine particulate matter on human health. Hence, many western countries introduced a new emission regulation known as PM2.5, that regulates particles less than 2.5 microns in diameter. The existing particle separation devices such as electrostatic precipitators (ESPs) are of particular interest since they can economically capture particles effectively with a low pressure drop. The present ESPs provide high collection efficiencies of around 99.99% for micron and larger particles. However, the collection efficiency of submicron particles in the range from 0.1 to 1 mum and ultrafine particles, that is with particle diameters less than 0.1 mum, can be less than 50%. In this work, numerical and experimental studies were conducted to examine the effect of electrode geometries on the improvement of collection efficiency of submicron and ultrafine dust particles in electrostatic precipitators. The collection efficiency prediction was based on a modified Deutsche's equation after calculation of the three-dimensional electric potential and ion distribution. The particle charging models for diffusion and field charging methods were considered, based on the Knudsen number (Kn = 2lambdai/dp), where lambdai is the mean free path of negative ions and dp is the dust particle diameter. The constitutive relationship developed from the optical emission experiments was implemented to simulate ion distribution of corona discharge for various discharge electrodes. Experimental validations for total and partial collection efficiencies for particle size from 10-2 to 20 mm were conducted for bench and full scale ESPs.; Results show that the collection efficiency of submicron and ultrafine particles can be predicted with good accuracy for various geometries of discharge and dust collection electrodes. The spike-type discharge electrode with the I-type collecting electrode improves collection efficiency of fine particles when compared to the wire or rod discharge electrode with I-type collecting electrode. In the case of U and C-type collecting electrodes, there is an optimum fin length for which the highest collection efficiency can be reached. Comparison of experimental and predicted results shows that the total collection efficiency predicted by the present model agrees well with experimental results for the bench-scale ESPs. For the large-scale wire-plate type ESP, the present simulation results conducted for various gas temperatures and dust resistivities agree quantitatively and qualitatively with the experimental results.; The model proved to be useful for prototype design of collecting and discharge electrodes, modification and existing ESP's and scale-up of new ESP's in order to meet new emission regulations.
机译:关于细颗粒物对人类健康的影响的科学研究已引起人们对细颗粒物排放控制的最新兴趣。因此,许多西方国家引入了一种称为PM2.5的新排放法规,该法规对直径小于2.5微米的颗粒进行了管制。现有的颗粒分离装置,例如静电除尘器(ESP),特别令人关注,因为它们可以在低压降下经济有效地捕获颗粒。当前的ESP对微米和更大的颗粒提供约99.99%的高收集效率。然而,亚微米颗粒的收集效率在0.1至1μm的范围内,并且超细颗粒(即,粒径小于0.1μm的颗粒)的收集效率可以小于50%。在这项工作中,进行了数值和实验研究,以检验电极几何形状对改善静电除尘器中亚微米和超细粉尘颗粒收集效率的影响。在计算三维电势和离子分布之后,收集效率预测基于修改后的Deutsche方程。基于克努森数(Kn = 2lambdai / dp),考虑了用于扩散和电场充电方法的粒子带电模型,其中lambdai是负离子的平均自由程,而dp是粉尘粒径。实施了从光发射实验得到的本构关系,以模拟各种放电电极的电晕放电的离子分布。对于台式和全尺寸电除尘器,对10-2至20 mm的颗粒大小的全部和部分收集效率进行了实验验证。结果表明,对于放电和集尘电极的各种几何形状,可以很好地预测亚微米和超细颗粒的收集效率。与具有I型收集电极的线或棒放电电极相比,具有I型收集电极的尖峰型放电电极提高了微粒的收集效率。在U型和C型集电极的情况下,存在最佳的翅片长度,为此可以达到最高的捕集效率。实验和预测结果的比较表明,本模型预测的总收集效率与台式ESP的实验结果非常吻合。对于大型线板式ESP,在各种气体温度和粉尘电阻率下进行的本模拟结果在数量上和质量上与实验结果一致。该模型被证明对于收集和放电电极的原型设计,修改和现有的ESP以及扩大新的ESP以满足新的排放法规非常有用。

著录项

  • 作者

    Brocilo, Drazena.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

  • 入库时间 2022-08-17 11:43:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号