首页> 外文学位 >Parsimony and complexity in epidemiological models for decision support in animal health.
【24h】

Parsimony and complexity in epidemiological models for decision support in animal health.

机译:流行病学模型中的简约性和复杂性,为动物健康提供决策支持。

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1 provides an introduction to the subject of epidemiological models, parsimony and complexity in modeling, and a review of the different models used in animal health policy, focusing on the levels of complexity and parsimony approaches used in the published literature. For this, I make a distinction between complexity in the model structure (structural complexity) and in the corresponding parameters used in the epidemiological models (parameter complexity), and I use examples such as the 2001 Foot-and-mouth disease (FMD) outbreak in the UK to depict how complexity and parsimony can directly affect health policy.;In Chapter 2, I explore the effect that structural complexity and parsimony in the model (specifically, population, contact, and spatial heterogeneity) can have in the results commonly used for policy. For this, I developed a flexible herd-level model that simulates the spatial and temporal spread of infectious diseases between animal populations, and used it to evaluate sixteen scenarios, involving combinations of multiple production-types (PT) with heterogeneous contact structure versus single PT with homogeneous contact structure; random versus actual spatial distribution of population units (based on an existing dataset from the state of Minnesota); high versus low disease infectivity; and no vaccination versus preemptive ring vaccination. The results from the scenarios revealed that for fast spreading epidemics, the actual locations of population units (e.g. herds) may not be as relevant to predict outbreak size and duration as information on population and contact heterogeneity. Nonetheless, both population and spatial heterogeneity might be important to model slower spreading epidemic diseases. This information is relevant to inform data collection and model building efforts for epidemiological models used to inform health policy.;In chapter 3, I used an epidemiological modeling framework to estimate the potential losses from a new emerging disease (ED) in channel catfish ponds in Mississippi, with the purpose of estimating animal inventory losses for agricultural insurance purposes. Given the uncertain epidemiology of a new ED, the predictions naturally have a high level of uncertainty, which motivated the design of a structurally complex model to try to evaluate the potential spread of the disease from the "bottom-up". For this, I used two coupled stochastic models that simulate the spread of an ED between and within ponds under high, medium, and low disease impact scenarios, which were parameterized based on a meeting with fish disease experts. The models provided a systematic method to organize the current knowledge on the emerging disease perils and, ultimately, use this information to help develop actuarially sound agricultural insurance policies and premiums. The conclusions from this chapter was that a structurally complex model was necessary to make inferences about a hypothetical ED for which no empirical data is available, but the estimates obtained included a large amount of uncertainty driven by the stochastic nature of disease outbreaks, by the uncertainty in the frequency of future ED occurrences, and by the often sparse data available from past outbreaks.;Chapter 4 evaluates the impact that parsimony and complexity in model parameters can have in model predictions. For this, I developed a Bayesian model that estimates the confidence on individual infection progression using longitudinal screening test results, and use the results to estimate infectious disease model parameters using a Monte Carlo simulation model. The disease trajectories were used to estimate the joint uncertainty distributions of the transition probabilities of the stochastic Markov Chain model, and were then used to project the yearly progression of disease in 20 years. The joint uncertainties in both, the test characteristics and the disease parameters exhibited a significant level of correlation, and sensitivity analysis showed that ignoring parameter correlation considerably underestimated the variance of the model predictions. The main conclusion from this chapter is that the correlation between disease parameters can have an important impact in the variance of relevant disease model outputs and therefore, this correlation should be taken into account when parameterizing stochastic epidemic models. (Abstract shortened by UMI.)
机译:第1章介绍了流行病学模型,建模中的简约性和复杂性,并回顾了动物卫生政策中使用的不同模型,重点是已发表文献中使用的复杂性和简约性方法的水平。为此,我区分了模型结构的复杂性(结构复杂性)和流行病学模型中使用的相应参数(参数复杂性),并以2001年口蹄疫(FMD)爆发为例在英国描述了复杂性和简约性如何直接影响卫生政策。;在第二章中,我探讨了模型中结构复杂性和简约性(特别是人口,接触和空间异质性)对常用结果的影响。为政策。为此,我开发了一个灵活的畜群级别模型,该模型模拟了动物种群之间传染病的时空分布,并用它来评估十六种情况,其中涉及具有异构接触结构的多种生产类型(PT)与单个PT的组合具有均匀的接触结构;人口单位的随机空间分布与实际空间分布(基于来自明尼苏达州的现有数据集);高与低疾病传染性;并且没有接种疫苗与先发制人的环状疫苗。方案的结果表明,对于流行病的快速传播,人口单位(例如牛群)的实际位置可能与人口和接触异质性信息不相关,因此无法预测暴发规模和持续时间。尽管如此,种群和空间异质性对于模拟慢速传播的流行病可能都是重要的。此信息与为用于卫生政策的流行病学模型提供数据收集和模型建立工作有关。;在第3章中,我使用了流行病学建模框架来估计河道cat鱼池塘中新出现的疾病(ED)的潜在损失。密西西比州,目的在于估算出于农业保险目的的动物存货损失。考虑到新ED的流行病学不确定性,这些预测自然就具有很高的不确定性,这促使设计结构复杂的模型来尝试从“自下而上”评估疾病的潜在传播。为此,我使用了两个耦合的随机模型来模拟ED在高,中,低疾病影响情况下在池塘之间和池塘内部的扩散,并根据与鱼类疾病专家的会面进行了参数化。这些模型提供了一种系统的方法,可以组织有关新出现的疾病危险的最新知识,并最终使用此信息来帮助制定精算合理的农业保险政策和保费。本章的结论是,需要一个结构复杂的模型来推断没有经验数据的假设ED,但是获得的估计值包括由疾病暴发的随机性质驱动的大量不确定性,即不确定性第四章评估了简约性和复杂性对模型预测的影响。第四章评估了简约性和复杂性对模型预测的影响。为此,我开发了一种贝叶斯模型,该模型使用纵向筛选测试结果来估计个体感染进展的置信度,并使用结果通过蒙特卡洛模拟模型来估计传染病模型参数。该疾病轨迹用于估计随机马尔可夫链模型的转移概率的联合不确定性分布,然后用于预测20年内疾病的年度进展。测试特征和疾病参数的联合不确定性均表现出显着的相关性,而敏感性分析表明,忽略参数相关性会大大低估模型预测的方差。本章的主要结论是,疾病参数之间的相关性可能会对相关疾病模型输出的方差产生重要影响,因此,在对随机流行模型进行参数化时应考虑这种相关性。 (摘要由UMI缩短。)

著录项

  • 作者

    Zagmutt, Francisco J.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Statistics.;Health Sciences Epidemiology.;Biology Veterinary Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号