首页> 外文学位 >Optimization and characterization of self-assembled monolayer multilayer surface-enhanced Raman scattering substrate for immuno-nanosensors.
【24h】

Optimization and characterization of self-assembled monolayer multilayer surface-enhanced Raman scattering substrate for immuno-nanosensors.

机译:免疫纳米传感器自组装单层多层表面增强拉曼散射底物的优化和表征。

获取原文
获取原文并翻译 | 示例

摘要

Surface-enhanced Raman scattering (SERS) is a powerful analytical tool and the recent expansion of substrates for SERS measurement broadens its field of applications, including SERS-based immuno-nanosensing. This dissertation describes the optimization and characterization of self-assembled monolayer (SAM) multilayer SERS substrates for improving performance of different types of substrates. SERS substrates derived from metal film on nanostructures were modified with multiple metal films interspaced with SAM dielectric spacers to achieve multilayered SERS substrates. The fundamental concept of this substrate geometry exploited the cumulative effect of the multiple electromagnetic fields and various properties of SAMs to optimize SERS enhancement of multilayer SERS substrates to about 20-fold compared to conventional substrates.;SAMs of less bulky terminal groups of alkylthiols with relatively small dielectric constant, strong attractive interaction, and good electron donating ability enhanced multilayer SERS. Compared to SFON SERS substrates, alkyl-terminated SAM substrates exhibited about 7-fold SERS enhancement. SAM formation conditions that enhanced strong intermolecular interactions improved SERS enhancement. Thus, -COOH-terminated SAM multilayer substrates fabricated in acidic conditions exhibited SERS enhancement up to 10-fold compared to similar substrates fabricated in basic conditions.;It was observed that the distance of separation of the adjacent metal films (2 nm) was important for optimum interaction of EM fields generated on these metal films. SAM multilayer SERS substrates formed from 7 or 8 carbon atoms of alkyl-terminated alkylthiols with separation distances of 1.2 and 1.4 nm respectively exhibited about 14 to 16-fold SERS enhancement relative to SFON. A systematic increase of the separation distance between adjacent metal films beyond 2 nm led to a decrease in the SERS enhancement, indicating decreasing interactive effect between the adjacent EM fields.;In general, there was an increase in the SERS enhancement with increase in the number of SERS-active layers. Correspondingly, the relative standard deviation decreased to about 5% for multilayered substrates compared to 14% for conventional single layered substrates, thereby improving multilayer SERS reproducibility while increasing the SERS enhancement. Overall, SERS enhancement of conventional SERS substrates can be optimized using multiple SERS-active surfaces well separated with appropriate dielectric spacers and optimum separation distance.
机译:表面增强拉曼散射(SERS)是一种强大的分析工具,最近用于SERS测量的底物扩展扩大了其应用领域,包括基于SERS的免疫纳米传感。本论文描述了自组装单层(SAM)多层SERS基底的优化和表征,以提高不同类型基底的性能。将纳米结构上的金属膜衍生的SERS基板用与SAM介电间隔物间隔开的多个金属膜进行修饰,以获得多层SERS基板。这种基材几何形状的基本概念是利用多个电磁场的累积效应和SAM的各种特性来优化多层SERS基材的SERS增强,使其比常规基材提高约20倍。介电常数小,吸引作用强,给电子能力强,增强了多层SERS。与SFON SERS底物相比,烷基封端的SAM底物表现出约7倍的SERS增强。增强强分子间相互作用的SAM形成条件改善了SERS增强。因此,与在碱性条件下制备的类似衬底相比,在酸性条件下制备的-COOH封端的SAM多层衬底表现出高达10倍的SERS增强。;观察到相邻金属膜的分离距离(<2 nm)为对于这些金属膜上产生的电磁场的最佳相互作用至关重要。相对于SFON,由7或8个碳原子的烷基封端的烷基硫醇形成的SAM多层SERS底物分别具有1.2和1.4 nm的分离距离,显示出约14至16倍的SERS增强。相邻金属膜之间的分隔距离的系统性增加超过2 nm导致SERS增强降低,表明相邻EM场之间的相互作用降低。;通常,SERS增强随着数量的增加而增加SERS活性层。相应地,与常规单层基材的14%相比,多层基材的相对标准偏差降低至约5%,从而提高了多层SERS的可再现性,同时提高了SERS的增强。总体而言,可以使用多个SERS活性表面(通过适当的介电垫片和适当的分隔距离很好地分开)来优化常规SERS基板的SERS增强性能。

著录项

  • 作者

    Klutse, Charles Kofi.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Chemistry Analytical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号