首页> 外文学位 >Design Techniques for Frequency Synthesizers in Highly Scaled CMOS Technologies.
【24h】

Design Techniques for Frequency Synthesizers in Highly Scaled CMOS Technologies.

机译:大规模CMOS技术中频率合成器的设计技术。

获取原文
获取原文并翻译 | 示例

摘要

While extremely scaled CMOS transistors are believed to cause many design concerns especially for conventional analog circuits, CMOS technology scaling, on the other hand, has also opened up new opportunities for analog and mixed-mode circuit designs to mitigate design challenges by the speed improvement and the high density of the nanometer devices.;Phase-locked-loop-based frequency synthesizers are essential building blocks in almost all the communication systems. The design of PLLs is a true mixed signal design challenge covering from high speed analog and RF blocks (VCO), to high speed digital blocks (dividers), to low speed analog (charge pump and loop filter) and low speed digital (phase frequency detector) circuits. In this thesis, we study design challenges and present corresponding solutions to realize PLLs in the nano-scale CMOS era. In particular we focus on supply voltage scaling, area scaling, ultra-wide frequency range, and ultra-low noise performance.;An ultra low voltage (ULV) 2.5-GHz GFSK modulator implemented in a 90-nm CMOS technology using only standard digital regular Vt (RVT) devices will first be introduced to address robustness concerns and speed issues due to the supply voltage scaling (down to 0.5V). Then, a 2.5-GHz ultra-compact (150um x 280um) analog PLL implemented in a 45-nm CMOS technology with a fully integrated LC-VCO and an on-chip passive R-C loop filter will further be used to show that area scaling can indeed be achieved for a PLL through a rigorous area-scaling scheme of LC oscillators and a new loop filter structure.;New emerging applications such as software-defined radios or highly integrated test instrumentation require the PLL synthesizer to have ultra wide bandwidth and ultra low phase noise. We will present the approaches to mitigate these challenging design objectives by exploiting the capabilities of nanometer transistors. A wideband synthesizer covering from 125MHz to 32GHz with a constant performance across the entire frequency range will be presented; the scaling schemes and design methodologies to achieve constant noise performance across the ultra-wide frequency range will be discussed. Finally, an ultra low noise fractional-N synthesizer will be presented to show how low phase noise fractional-N frequency synthesis can be achieved by taking the full advantage of nano-scale CMOS transistors.
机译:尽管人们认为超大规模CMOS晶体管会引起很多设计问题,尤其是对于传统的模拟电路,但另一方面,CMOS技术的规模化也为模拟和混合模式电路设计提供了新的机遇,以通过提高速度和降低设计难度来缓解设计挑战。基于锁相环的频率合成器是几乎所有通信系统中必不可少的组成部分。 PLL的设计是真正的混合信号设计挑战,涉及从高速模拟和RF模块(VCO)到高速数字模块(分频器),再到低速模拟(电荷泵和环路滤波器)和低速数字(相频)检测器)电路。在本文中,我们研究了设计挑战并提出了相应的解决方案,以实现纳米级CMOS时代的PLL。特别是,我们专注于电源电压缩放,面积缩放,超宽频率范围和超低噪声性能。;采用90nm CMOS技术,仅使用标准数字电路实现的超低电压(ULV)2.5 GHz GFSK调制器首先将引入常规的Vt(RVT)器件,以解决由于电源电压缩放(低至0.5V)引起的耐用性问题和速度问题。然后,将进一步采用以45 nm CMOS技术实现的2.5 GHz超紧凑型(150um x 280um)模拟PLL,该技术具有完全集成的LC-VCO和片上无源RC环路滤波器,以显示面积缩放可以确实可以通过严格的LC振荡器面积缩放方案和新的环路滤波器结构来实现PLL。新出现的新兴应用,例如软件无线电或高度集成的测试仪器,要求PLL合成器具有超宽带宽和超低功耗。相位噪声。我们将介绍利用纳米晶体管的功能来缓解这些挑战性设计目标的方法。将介绍一种宽带合成器,其频率范围从125MHz到32GHz,并在整个频率范围内保持恒定的性能。将讨论在超宽频率范围内实现恒定噪声性能的缩放方案和设计方法。最后,将介绍超低噪声分数N频率合成器,以展示如何通过充分利用纳米级CMOS晶体管来实现低相位噪声分数N频率合成。

著录项

  • 作者

    Yu, Shih-An.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 299 p.
  • 总页数 299
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号