首页> 外文学位 >Novel Electrofluidic Display Devices Enabled by Fluid-Confining Laplace Barriers.
【24h】

Novel Electrofluidic Display Devices Enabled by Fluid-Confining Laplace Barriers.

机译:流体限制拉普拉斯屏障实现的新型电流体显示设备。

获取原文
获取原文并翻译 | 示例

摘要

The field of microfluidics involves the ability to manipulate small volumes of fluid (typically 10's of nanoliters) through small channels (diameters of 10's to 100's of microns). The main application of microfluidics to date has been in Lab on a Chip (LOC). The term Lab on a Chip implies that all of the analyses performed in a standard laboratory are consolidated onto a single chip device. This allows for: the use of less sample volume and reagents, improved separations, lower costs, shorter analysis times, and smaller footprints of analyzers. Recently there has also been a growing interest in the ability to manipulate small volumes of fluids (particularly colored ones) in the displays industry. Here, the ability to precisely control the fluids can be leveraged into making a highly reflective display.;In both LOC and display applications it is imperative to be able to move the fluids reliably within the device. To date the dominant approach in microfluidics is to create a solid channel and flow the fluid through it using an external application of pressure. While this approach has proven to be very reliable it is not easily reconfigurable. If any change in the fluid path is desired a new channel configuration must be fabricated. The most robust approach to microfluidics leading to the widest range of applications would be one where fluid shape and/or position could be manipulated reversibly such that the same chip area could be utilized for a variety of fluidic functions.;Various electrical approaches have been demonstrated to have the capability of manipulating fluid shape. This behavior of electrically manipulating a bulk fluid is commonly referred to as electrofluidics. To date, none of the electrofluidic approaches have shown the ability to maintain fluid shape after the electrical stimulus has been removed. This is a major issue as constant application of electrical stimulus causes high power consumption, increases the complexity of the drive electrodes and electronics, can interfere with other processes such as electrical separations, and can reduce device lifetime.;Presented in this dissertation is the first platform capable of electrical reconfiguration of fluid shapes and paths, while maintaining those shapes even after the electrical stimulus is removed. The platform utilizes local increases in Laplace pressure to act as barriers to free fluidic flow, and has thus been given the title 'Laplace barriers'. The physics and performance of Laplace barriers is presented using theoretical equations, experimental results, and dynamic numerical modeling. The various parameters of Laplace barriers are also optimized to show that a platform can be achieved with >60% open channel area, >5cm/s fluid transport, and for display applications with >80% reflectance and ∼50:1 contrast ratio. Finally, a demonstration device utilizing Laplace barriers is presented, providing one example of how Laplace barriers can be used for practical applications.
机译:微流体领域涉及通过小通道(直径为10到100微米的微米)处理少量流体(通常为10纳升)的能力。迄今为止,微流体技术的主要应用已在芯片实验室(LOC)中。术语“芯片实验室”意味着将在标准实验室中执行的所有分析整合到单个芯片设备上。这允许:使用更少的样品量和试剂,改进的分离,更低的成本,更短的分析时间以及更小的分析仪占地面积。最近,在显示行业中,对处理少量流体(尤其是有色流体)的能力也越来越感兴趣。在这里,可以利用精确控制流体的能力来制作高反射率的显示器。在LOC和显示应用中,必须能够在设备内可靠地移动流体。迄今为止,微流体学中的主要方法是创建一个固体通道,并使用外部压力使流体流过该通道。尽管已证明此方法非常可靠,但它不容易重新配置。如果需要改变流体路径,则必须制造新的通道配置。导致广泛应用的最鲁棒的微流体方法将是一种可逆地控制流体形状和/或位置,从而可以将相同的芯片面积用于多种流体功能的方法。具有操纵流体形状的能力。电操纵本体流体的这种行为通常被称为电流体学。迄今为止,在去除电刺激后,没有任何一种电流体方法能够保持流体的形状。这是一个主要问题,因为持续施加电刺激会导致高功耗,增加驱动电极和电子设备的复杂性,会干扰其他过程(例如电隔离)并会缩短设备寿命。能够对流体形状和路径进行电重构的平台,即使在去除电刺激后仍能保持这些形状。该平台利用拉普拉斯压力的局部增加来充当自由流体流动的屏障,因此被冠以“拉普拉斯屏障”的称号。使用理论方程,实验结果和动态数值模型介绍了拉普拉斯势垒的物理性能。拉普拉斯屏障的各种参数也进行了优化,以显示平台可实现> 60%的明渠面积,> 5cm / s的流体传输,以及用于显示应用,其反射率> 80%,对比度约为50:1。最后,展示了一种利用拉普拉斯势垒的演示设备,提供了如何将拉普拉斯势垒用于实际应用的一个示例。

著录项

  • 作者

    Kreit, Eric Brian.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Electronics and Electrical.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号