首页> 外文学位 >Nitrogen transport and processing in the intermittent drainage network: Linking terrestrial and aquatic ecosystems.
【24h】

Nitrogen transport and processing in the intermittent drainage network: Linking terrestrial and aquatic ecosystems.

机译:间歇性排水网络中的氮运输和加工:将陆地和水生生态系统联系起来。

获取原文
获取原文并翻译 | 示例

摘要

Watersheds are highly retentive of nitrogen, with N deposition generally exceeding export in stream flow. In the Sycamore Creek Watershed, located in the Sonoran Desert of Central Arizona, approximately 10% of annual atmospheric deposition of N is exported in stream flow. The fate of the remaining 90% or the location of hot spots in the landscape that are responsible for removal of N remain unknown. The question is where and when does N loss take place and what is the role of terrestrial and aquatic landscape elements in N removal? This project emphasizes the relationship between individual storm characteristics, N transport, and N loss via denitrification, along a terrestrial-aquatic continuum from hillslope patches that occupy different topographic positions, to small intermittent channel networks that hydrologically link the terrestrial uplands with larger perennial streams during storms. Results demonstrate that storm size, intensity and time since last storm influence the spatial extent of surface flow in the intermittent network. In addition, the form of N in runoff water shifts from ammonium (NH4-N) during the first storm of the summer monsoon season to nitrate (NO3-N) toward the end. Denitrification rates varied considerably amongst landscape patches, with highest values under plants and on riparian terraces and lower values in intermediate channel networks. Field and laboratory experiments demonstrate that rainfall triggers denitrification in soils, with peak rates related to carbon (C) and N availability; and that N and moisture constrain the period of biological activity following a storm, depending on spatial location. The extent and configuration of fluvial reconnection amongst patches in the landscape following long drought periods determines the fate of available N, where N is processed and removed, and may cause hot spots to shift from place to place in response to local conditions. Thus, the spatial distribution of material and movement among different landscape elements, as well as hot spots for denitrification, will depend on size, sequence and intensity of individual storms.
机译:流域对氮的保持能力很强,氮的沉积通常超过河流的出口量。在位于亚利桑那州中部索诺兰沙漠的Sycamore Creek流域中,每年N的大气沉积物中约有10%以气流的形式输出。剩下的90%的命运或景观中负责去除N的热点的位置仍然未知。问题是氮的损失在何时何地发生,陆地和水生景观元素在除氮中的作用是什么?该项目着重强调了个体风暴特征,氮运移和氮反硝化之间的关系,沿着陆地-水上连续体从占据不同地形位置的山坡斑块到小型间歇性河道网络,在水文上将陆地高地与较大的多年生河流联系在一起。暴风雨。结果表明,自上次风暴以来的风暴规模,强度和时间影响间歇网络中地表流的空间范围。此外,径流水中的氮的形式从夏季风的第一场暴风雨期间的铵态氮(NH4-N)逐渐向硝态氮(NO3-N)转变。在景观斑块中,反硝化率差异很大,在植物和河岸阶地的反硝化率最高,而在中间渠道网络中的反硝化率较低。现场和实验室实验表明,降雨会触发土壤中的反硝化作用,其峰值速率与碳(C)和氮的有效性有关。氮和水分会限制暴风雨后的生物活动时间,具体取决于空间位置。长期干旱后,景观中各斑块之间的河流重新连接的程度和配置决定了可利用的氮的命运,在该处处理和去除了氮,并可能会因局部条件而导致热点在不同地点之间转移。因此,不同景观要素之间物质和运动的空间分布以及反硝化的热点将取决于单个风暴的大小,序列和强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号