首页> 外文学位 >Nano-sized silicon particle formation in high density silane plasma and its applications.
【24h】

Nano-sized silicon particle formation in high density silane plasma and its applications.

机译:高密度硅烷等离子体中纳米级硅粒子的形成及其应用。

获取原文
获取原文并翻译 | 示例

摘要

Study of nano-sized particle formation in processing plasma has received increased attention in recent years. On the one hand, particle generation is considered harmful in the semiconductor industry and on the other hand particles generated with specific size, composition and crystallinity are useful for many electronic, optoelectronic and magnetic applications. It has become especially necessary to find methods to control the size, concentration, crystallinity, and composition of particles given the fact the particles with a give size and composition have become useful. This research thesis investigates several fundamental issues of nano-sized particle formation in high density plasma. The emphasis is on conditions that generate non-agglomerated, extremely monodisperse silicon particles. Characterization techniques and analyzing methods are developed to understand nano-sized silicon particle electrical properties. We also exploited other new applications based on nano-sized silicon particles which have not been developed, such as nano-particle Schottky Barrier transistor. Based on this idea, a silicon only technology would permit three-dimensional circuits.; The following are the key results: (1) Three regimes are mapped out from our experiments: a no particle domain, a poly-disperse and agglomerated domain, and a mono-disperse domain. In a mono-disperse domain, particle diameter is highly uniform with the relative standard deviation ranging from 0.03 to 0.13. The addition of hydrogen to the plasma tends to increase the crystallinity of the nanoparticles. (2) The novel device structure was demonstrated by TCAD simulation and device morphology measurement. The charge transport characteristics in nano-sized amorphous silicon particles was studied at different temperature over a wide range of applied voltage. The analysis of current-voltage-temperature characteristics of the new device provides a good fit to the theory and explains some of the measured results in the term of traps in the energy gap. (3) Promising characteristics of novel particle SBMOSFET have been described on the basis of ISE-TCAD. Details of energy-band, electron density and current density profile in particles are presented. The lowest electron density is directly under the gate region, and undesirable effects of the interface at the gate on the electron transport are substantially reduced.
机译:近年来,在处理等离子体中纳米尺寸颗粒形成的研究受到越来越多的关注。一方面,在半导体工业中,颗粒的产生被认为是有害的,另一方面,具有特定尺寸,组成和结晶度的颗粒可用于许多电子,光电和磁性应用。考虑到具有给定尺寸和组成的颗粒的事实,找到控制颗粒的尺寸,浓度,结晶度和组成的方法变得特别必要。本研究论文研究了高密度等离子体中纳米尺寸颗粒形成的几个基本问​​题。重点在于产生非聚集的,极度单分散的硅颗粒的条件。开发表征技术和分析方法以了解纳米级硅颗粒的电性能。我们还利用了尚未开发的基于纳米级硅颗粒的其他新应用,例如纳米颗粒肖特基势垒晶体管。基于这种想法,纯硅技术将允许三维电路。以下是主要结果:(1)从我们的实验中提出了三种方案:无颗粒域,多分散和团聚域以及单分散域。在单分散域中,粒径高度均匀,相对标准偏差范围为0.03至0.13。将氢添加到等离子体中倾向于增加纳米颗粒的结晶度。 (2)通过TCAD仿真和器件形态测量证明了新型器件结构。研究了纳米晶态非晶硅颗粒在不同温度,较宽的施加电压范围内的电荷传输特性。对新器件的电流-电压-温度特性的分析非常符合该理论,并以能隙中的陷阱的形式解释了一些测量结果。 (3)基于ISE-TCAD描述了新型颗粒SBMOSFET的有前途的特性。给出了粒子的能带,电子密度和电流密度分布的详细信息。最低的电子密度直接位于栅极区域的下方,大大降低了栅极处的界面对电子传输的不良影响。

著录项

  • 作者

    Shen, Zhe.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号