首页> 外文学位 >Nanomaterials characterization and bio-chemical sensing using microfabricated devices.
【24h】

Nanomaterials characterization and bio-chemical sensing using microfabricated devices.

机译:使用微细加工设备的纳米材料表征和生化传感。

获取原文
获取原文并翻译 | 示例

摘要

A variety of nanostructured materials have been synthesized in recent years. These nanomaterials have potential applications in areas spanning computing, energy conversion, sensing, and biomedicine. Because of size confinement effects, furthermore, these nanomaterials are expected to show very different physical properties from those of their bulk counterparts. The measurement of their properties, however, has been very challenging due to their small dimensions. Similarly, it remains a challenge to detect chemical and biomolecular species due to their small dimensions.; This dissertation presents the development of microelectromechanical systems (MEMS) devices for the characterization of thermophysical properties of nanomaterials and for the detection of chemical species and biological cells.; The thermophysical property of one-dimensional (1D) nanomaterials was measured using a batch-fabricated microdevice consisting of two adjacent symmetric silicon nitride membranes suspended by long silicon nitride beams. Three methods were developed to assemble nanomaterials with the measurement devices. Those three methods include a wet deposition process, an in-situ chemical vapor deposition technique, and an electric-field-assisted assembly method. During the measurement, one membrane is Joule-heated to cause heat conduction through the nanomaterials to the other membrane, allowing for the measurement of thermal conductance and Seebeck coefficient. The electrical conductance can also be measured using the microdevice. The temperature-dependent properties of an individual single-wall carbon nanotubes (SWCNs) and SWCN bundles were measured. Measurement sensitivity, errors, and uncertainty were examined. The obtained thermal conductivity of an individual SWCN is found to be much higher than bundles of SWCNs in the range of 2000--11000 W/m-K at room temperature, in agreement with theoretical predictions. Furthermore, the thermal conductivity of bundles of SWCNs are found to be suppressed by contact resistance between interconnected SWCNs in the bundle.; The microdevice has also been integrated with metal oxide nanobelts for chemical sensing. The sensing mechanism is based on surface oxidation-reduction (redox) processes that change the electrical conductance of the nanobelt. The sensor was found to be highly sensitive to inflammable and toxic gas species including nitrogen dioxide (NO2), ethanol, and dimethyl methylphosphonate (DMMP). (Abstract shortened by UMI.)
机译:近年来,已经合成了多种纳米结构材料。这些纳米材料在计算,能量转换,传感和生物医学等领域具有潜在的应用。此外,由于尺寸限制效应,这些纳米材料预计将显示出与其本体同类材料非常不同的物理特性。然而,由于其尺寸小,对其性能的测量一直是非常具有挑战性的。同样,由于其尺寸小,检测化学和生物分子种类仍然是一个挑战。本文介绍了微机电系统(MEMS)器件的发展,该器件用于表征纳米材料的热物理性质以及检测化学物种和生物细胞。一维(1D)纳米材料的热物理性质是使用批量制造的微型设备测量的,该设备由两个相邻的对称氮化硅膜组成,这些氮化硅膜被长的氮化硅束悬挂。开发了三种方法将纳米材料与测量装置组装在一起。这三种方法包括湿法沉积工艺,原位化学气相沉积技术和电场辅助组装方法。在测量过程中,对一个膜进行焦耳加热以引起通过纳米材料到另一膜的热传导,从而可以测量热导率和塞贝克系数。电导率也可以使用微型设备进行测量。测量了单个单壁碳纳米管(SWCN)和SWCN束的温度相关特性。测量灵敏度,误差和不确定性。与理论预测相一致,发现在室温下单个SWCN的获得的热导率在2000--11000 W / m-K范围内比SWCN的束高得多。此外,发现SWCN束中的导热性被束中互连的SWCN之间的接触电阻所抑制。微型设备还与金属氧化物纳米带集成在一起,用于化学传感。传感机制基于改变纳米带电导率的表面氧化还原(redox)过程。该传感器对包括二氧化氮(NO2),乙醇和甲基膦酸二甲酯(DMMP)在内的易燃气体和有毒气体物种高度敏感。 (摘要由UMI缩短。)

著录项

  • 作者

    Yu, Choongho.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Mechanical.; Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号