首页> 外文学位 >Functionalizing ultrafine fibers via di-functional reagents and their applications in enzyme immobilization.
【24h】

Functionalizing ultrafine fibers via di-functional reagents and their applications in enzyme immobilization.

机译:通过双功能试剂功能化超细纤维及其在酶固定中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Immobilization of enzymes enables repeated uses, simplifies after-reaction separation and purification as well as improves operational stability. Among solid supports for enzyme immobilization developed to date, fibrous polymeric materials are excellent candidates due to their unique advantages, including high specific surface area, wide ranging porosity, high mechanical strength, and versatile geometries. This research aims to generate functional fibers with highly reactive surfaces as solid supports. Toward this end, three approaches have been developed from the perspectives of attaching amphiphilic spacers, entrapping proteins into ultrafine fibers, and creating surface reactive groups.; The first approach involves activation of cellulose fiber surfaces to provide spacers and reactive groups to tether enzyme proteins. Ultrafine cellulose fibers (500∼800 nm) were generated from an electrospinning process. Activation of cellulose fibers was achieved by reacting with diacylchloride bearing amphiphilic spacers---polyethylene glycol (PEG). Coupling of a lipase enzyme to the PEG-attached cellulose fibers was accomplished by amide bond formation in the presence of a water-soluble carbodiimide. The bound lipase showed much improved stability upon the exposure to organic solvents, and significantly higher retention of catalytic activity at elevated temperatures up to 80°C than crude lipase.; Physical entrapment of enzymes in fibers is a simple yet efficient approach to immobilize enzymes. This work demonstrated that up to 50 wt% of lipase can be electrospun into ultrafine polyvinyl alcohol (PVA) fibers without significant loss in its activity and macroscopic phase separation. Entrapped lipase exhibited much improved storage stability than crude lipase.; Another functional support---aldehyde-containing cellulose (Cell-CHO) was generated from the reactions of cellulose with glutaraldehyde (GA). The factors that controlled the activation level---the quantity of aldehyde, including concentrations of GA and a Lewis acid catalyst, and reaction temperature were studied. Furthermore, a small amine-bearing compound was attached to Cell-CHO, showing its potential for protein immobilization.; Finally, ultrafine fibrous PVA membranes, produced by electrospinning of aqueous PVA solution, were rendered water stability by reacting with GA and PEG diacylchloride. This water-stable PEG grafted PVA membrane is expected to be useful in biomedical and biotechnological fields.
机译:固定酶可以重复使用,简化了反应后的分离和纯化,并提高了操作稳定性。在迄今为止开发的用于酶固定的固体载体中,纤维聚合物材料因其独特的优势而成为极好的候选者,这些优势包括高比表面积,宽范围的孔隙率,高机械强度和通用的几何形状。这项研究旨在产生具有高反应性表面的功能性纤维作为固体载体。为此,从连接两亲性间隔基,将蛋白质捕获到超细纤维中以及产生表面反应性基团的角度出发,已经开发出三种方法。第一种方法涉及活化纤维素纤维表面,以为间隔酶蛋白提供间隔基和反应性基团。静电纺丝过程产生了超细纤维素纤维(500-800 nm)。纤维素纤维的活化是通过与带有二酰氯的两亲性间隔基---聚乙二醇(PEG)反应来实现的。通过在水溶性碳二亚胺存在下形成酰胺键,将脂肪酶与附着有PEG的纤维素纤维偶联。结合的脂肪酶在暴露于有机溶剂后显示出大大改善的稳定性,并且在高达80℃的高温下比粗脂肪酶具有更高的催化活性保留率。酶在纤维中的物理捕获是固定酶的一种简单而有效的方法。这项工作表明,可以将高达50 wt%的脂肪酶电纺成超细聚乙烯醇(PVA)纤维,而不会显着降低其活性和宏观相分离。截留的脂肪酶比粗脂肪酶具有更好的储存稳定性。纤维素和戊二醛(GA)的反应产生了另一种功能性支持物-含醛的纤维素(Cell-CHO)。研究了控制活化水平的因素-醛的量,包括GA和路易斯酸催化剂的浓度以及反应温度。此外,一种小的含胺化合物附着在Cell-CHO上,表明其具有固定蛋白质的潜力。最后,通过静电纺丝PVA水溶液制得的超细PVA纤维膜通过与GA和PEG二酰氯反应而具有水稳定性。这种水稳定的PEG接枝的PVA膜有望用于生物医学和生物技术领域。

著录项

  • 作者

    Wang, Yuhong.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

  • 入库时间 2022-08-17 11:43:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号