首页> 外文学位 >Fast backprojection algorithms for divergent beam tomography.
【24h】

Fast backprojection algorithms for divergent beam tomography.

机译:用于发散束层析成像的快速反投影算法。

获取原文
获取原文并翻译 | 示例

摘要

Tomographic imaging involves forming an image of an object from projections or line integrals through the object. The method of choice for performing this reconstruction is filtered backprojection, which consist of a filter step and a backprojection step. Algorithms of this type are preferable, due to their simple implementation and good image quality. However, the computational cost of filtered backprojection algorithms is dominated by the backprojection step, which is O(N3) for 2-D and O(N4) for 3-D reconstruction. Fast backprojection algorithms reduce this complexity to O( N2logN) and O( N3logN), respectively.; Conventional imaging systems use divergent beam geometries for 2-D fan beam and 3-D cone beam tomography, as opposed to the well studied nondivergent parallel beam geometry. The divergent nature of the beams makes it challenging to extend fast parallel beam backprojection algorithms to these geometries.; This thesis covers the application of hierarchical backprojection algorithms to divergent beam geometries. An analysis of the hierarchical algorithm for 2-D fan beam and 3-D circular cone beam is provided, justifying the use of the method in divergent beam scenarios. Efficient implementations of the algorithm are also considered, along with methods for preserving image reconstruction accuracy. The algorithm is also extended to the case of 3-D helical cone beam tomography.; The use of hierarchical backprojection algorithms in divergent beam tomography is found to have good image quality while providing a speedup of 10--80 times over the conventional backprojection algorithm. These fast algorithms will be important when moving to higher resolution images or utilizing iterative reconstruction algorithms, which use multiple backprojection operations.
机译:层析成像涉及从穿过对象的投影或线积分形成对象的图像。进行此重构的选择方法是滤波反投影,该反投影由滤波步骤和反投影步骤组成。这种类型的算法是可取的,因为它们实现简单且图像质量好。但是,滤波后的反投影算法的计算成本由反投影步骤决定,反投影步骤对于2-D是O(N3),对于3-D重构是O(N4)。快速反投影算法将这种复杂度分别降低为O(N2logN)和O(N3logN)。常规成像系统将发散束几何形状用于2D扇形束和3D锥束层析成像,这与经过深入研究的非发散平行束几何形状相反。光束的发散性质使其难以将快速平行光束反投影算法扩展到这些几何形状。本文涵盖了分层反投影算法在发散光束几何中的应用。对2-D扇形梁和3-D圆锥形锥束的分层算法进行了分析,证明了该方法在发散束场景中的使用。还考虑了算法的有效实现以及用于保持图像重建精度的方法。该算法还扩展到3D螺旋锥束层析成像的情况。发现在发散束层析成像中使用分层反投影算法具有良好的图像质量,同时提供了比传统反投影算法快10--80倍的速度。当移至更高分辨率的图像或使用迭代重建算法(使用多个反投影操作)时,这些快速算法将非常重要。

著录项

  • 作者

    Brokish, Jeffrey Michael.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号