首页> 外文学位 >Improving greenhouse irrigation using a wireless soil moisture sensor-based automated irrigation system.
【24h】

Improving greenhouse irrigation using a wireless soil moisture sensor-based automated irrigation system.

机译:使用基于无线土壤湿度传感器的自动灌溉系统改善温室灌溉。

获取原文
获取原文并翻译 | 示例

摘要

The timing and quantity of irrigation are perennial horticultural management issues that are common to virtually every commodity in controlled environment production. Frequently, a lack of homogeneity of environmental variables, such as temperature, light and humidity result in heterogeneous water status of crops and growing substrates in the greenhouse. Similarly, varying environmental conditions preclude the effectiveness of simple timed cycles of irrigation management. A soil moisture sensor based system was developed and used to monitor and control the substrate volumetric water content (theta) while physiological responses of two species, miniature roses (Rosa x hybrida 'Alicante') and greenhouse tomatoes (Lycopersicum esculentum L. 'Matrix Fl Hybrid'), were measured. The crops were grown in the greenhouse using two irrigation strategies: sub-irrigation (theta = 25, 20, 17, 14.5 and 12.5%) for miniature roses and drip irrigation (theta = 30, 25, 20, 17 and 15%) for tomatoes. Complications and logistical issues with wired sensors stimulated the development and application of a wireless sensor interface for these experiments. Total accumulated above ground shoot dry weight for miniature rose plants where theta = 12.5% was lower compared to both theta = 17% and 25% throughout the study however, results demonstrated that theta between 12.5% - 25% exhibited no significant differences in other plant growth parameters. Tomato plant water lise resulted in a net water savings of 46.8%, an increase in plant effective water use efficiency (WUE) by 79.6%, and an increase in fruit effective WUE by 118% if irrigation was triggered at theta = 15% compared to 30%. However, results showed that theta between 15% - 30% had no significant differences in day-to-flowering, gas exchange, daytime leaf accumulated net CO2 assimilation, leaf chlorophyll content, maximum quantum efficiency of PSII photochemistry (Fv/Fm), root zone oxygen, plant growth, and instantaneous WUE. Successful operation of the wireless technology and irrigation system was demonstrated.
机译:灌溉的时间和数量是常年的园艺管理问题,在受控环境生产中,几乎所有商品都普遍存在灌溉问题。通常,缺乏诸如温度,光照和湿度之类的环境变量的同质性会导致农作物和温室中生长的基质的水分状态不均。同样,变化的环境条件也排除了简单的定时灌溉管理周期的有效性。开发了一种基于土壤湿度传感器的系统,该系统用于监测和控制基质的体积水含量(theta),同时还能监测两种玫瑰,微型玫瑰(Rosa x hybrida'Alicante')和温室番茄(Lycopersicum esculentum L.'Matrix Fl混合”)。使用两种灌溉策略在温室中种植农作物:微型玫瑰的亚灌溉(θ= 25、20、17、14.5和12.5%)和滴灌(θ= 30、25、20、17和15%)番茄。有线传感器的复杂性和后勤问题刺激了无线传感器接口在这些实验中的开发和应用。在整个研究中,theta = 12.5%低于theta = 17%和25%的微型玫瑰植物的地上干重累积总量,但是结果表明,theta在12.5%-25%之间与其他植物没有显着差异生长参数。如果在theta = 15%的条件下灌溉,与之相比,番茄植株的净水节约了46.8%的净水,使植物有效水分利用效率(WUE)提高79.6%,而水果有效水分利用效率提高118%。 30%。然而,结果显示,在15%-30%之间的theta在开花时,气体交换,白天叶片累积的净CO2同化,叶片叶绿素含量,PSII光化学的最大量子效率(Fv / Fm),根部无显着差异。区域氧气,植物生长和瞬时WUE。演示了无线技术和灌溉系统的成功运行。

著录项

  • 作者

    Cayanan, Donny Feliciano.;

  • 作者单位

    University of Guelph (Canada).;

  • 授予单位 University of Guelph (Canada).;
  • 学科 Agriculture Horticulture.Biology Plant Physiology.
  • 学位 M.Sc.
  • 年度 2010
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号