首页> 外文学位 >Conception, modelisation, fabrication et validation experimentale d'une structure d'aile en materiaux composites.
【24h】

Conception, modelisation, fabrication et validation experimentale d'une structure d'aile en materiaux composites.

机译:复合材料机翼结构的设计,建模,制造和实验验证。

获取原文
获取原文并翻译 | 示例

摘要

This work focuses on the design of a composite structure that can replace the aluminum base of the project CRIAQ 7.1. A finite element analysis model is developed and experimentally validated to allow the prediction of the displacement of the structure under different static loads.;A first investigation of the manufacturing process, vacuum assisted infusion (VARTM), is carried out using the analysis of the percentage by volume of fiber (ASTM 3171) and air (ASTM 2734) of 131 samples from 13 different composites panels. The composites used are the T300 Twill 2x2/8604 and T300 Twill Unidirectional/8604. Respective values of 65% and 59% for the percentage of fiber and 0.3% and 1.4% for the porosity with standard deviations for all values less than 1% have concluded that the process is stable and that the future part produced will present similar mechanical properties. The mechanical properties are then obtained using tension tests performed according to ASTM D 3039 and ASTM D 3515.;An easily manufacturable structure formed of two spars, height ribs and an upper and a lower surface is selected as the starting point for design. The scale is set at two meters and CATIAV5 is used for 3D modeling of the structure. Subsequently, a step on the comparison between the experimental and numerical results of 217 rectangular specimens subjected to loads in tension and bending allowed the validation of a first simple numerical model and the prediction of the sources of error of future models much complex. A first EF model of the simplified structure is then used to determine the positions of the spars so as to optimize the flexural and torsional rigidity of the section. This step is necessary to set the center of gravity of the structure, this value being useful to the calculation of aerodynamic forces. The software Ansys Classic and an APDL code are used for all EF analyzes.;The aerodynamic loads are determined using lift profiles of wind tunnel values obtained during the project CRIAQ 7.1. The lift force and the torque generated by the distance between the center of gravity and the aerodynamic load center are calculated for the 35 flight conditions tested experimentally in the project CRIAQ 7.1. The maximum values of 3590 kN for the lift force and 295 Nm for the torque are used when designing laminates.;An optimization criterion called the Laminate Structural Optimization Factor (LSOF) is then developed to allow comparison of several laminates subjected to loads in tension and shear respectively generated by the bending and twisting of the structure. Matlab software is then used to program an algorithm for calculating the IOSS criterion and the Tsai-Wu (TW) failure criterion for different stacks at the upper and lower surfaces of the structure. In total, 59 385 laminated are compared to allow the setting to six of the number of plies for the first EF analysis. The FE model of the simplified structure is reused for the final optimization of the orientation of the plies of the intrados and the extrados. Finally, an buckling analysis of the upper surface is carried out to determine the number of ribs. The addition of an ply allowed to fix the critical buckling length to 250 mm with a safety factor (SF) of 2.;A prototype of the structure is then fabricated and tested. Plugs are first modeled for all components and machined using a machining center for wood. Polyester and glass fiber molds are then produced using the machined plugs. These molds are then used for infusion (VARTM) of all the components. A jig is finally used for the bonding of the internal structure, the upper surface, the lower surface and the attachment points for the loads. For the experimental tests, the structure of the wing is fixed at one end with the upper surface pointing towards the ground. Three different loads are applied using sandbag. (Abstract shortened by UMI.).
机译:这项工作的重点是可以代替CRIAQ 7.1项目的铝制底座的复合结构的设计。开发了有限元分析模型并进行了实验验证,以预测在不同静态载荷下结构的位移。;对制造过程的首次调查,即真空辅助灌注(VARTM),使用了百分比分析分别从13种不同的复合材料面板中获得131个样品的纤维体积(ASTM 3171)和空气(ASTM 2734)。所使用的复合材料是T300斜纹2x2 / 8604和T300斜纹单向/ 8604。纤维百分比分别为65%和59%,孔隙率分别为0.3%和1.4%,所有值的标准偏差均小于1%,得出的结论是该过程稳定且未来生产的零件将具有相似的机械性能。然后使用根据ASTM D 3039和ASTM D 3515进行的拉伸试验获得机械性能。选择易于加工的结构,该结构由两个梁,高度肋以及上,下表面组成,以此作为设计的起点。比例尺设置为两米,CATIAV5用于结构的3D建模。随后,通过对217个矩形试样在拉伸和弯曲载荷下的实验结果和数值结果进行比较的步骤,可以验证第一个简单的数值模型,并可以预测非常复杂的未来模型的误差源。然后,使用简化结构的第一个EF模型确定翼梁的位置,以优化截面的抗弯和抗扭刚度。此步骤对于设置结构的重心是必要的,此值对于计算空气动力是有用的。所有的EF分析均使用软件Ansys Classic和APDL代码进行;空气动力学负荷是通过在CRIAQ 7.1项目中获得的风洞值的升程曲线确定的。对于CRIAQ 7.1项目中通过实验测试的35种飞行条件,计算了重心和气动负载中心之间的距离所产生的升力和扭矩。设计层压板时,使用的最大力为3590 kN,扭矩的最大值为295 Nm。;然后,开发了一种称为“层压板结构优化因子(LSOF)”的优化标准,可以比较承受拉力和载荷的几种层压板。剪切分别由结构的弯曲和扭曲产生。然后,使用Matlab软件对算法进行编程,以计算结构上下表面不同层的IOSS准则和Tsai-Wu(TW)破坏准则。总共比较了59 385个层压板,以允许将第一个EF分析的层数设置为六层。简化结构的有限元模型可用于内部和外部层板的方向的最终优化。最后,对上表面进行屈曲分析以确定肋的数量。添加一层可将临界屈曲长度固定为250 mm,安全系数(SF)为2。然后制造并测试了该结构的原型。首先对所有组件建模塞子,然后使用木材加工中心进行加工。然后使用机加工的塞子生产聚酯和玻璃纤维模具。然后将这些模具用于所有组件的灌注(VARTM)。最后使用夹具将内部结构,上表面,下表面和负载的连接点粘合在一起。对于实验测试,机翼的结构固定在一端,其上表面指向地面。使用沙袋施加三种不同的载荷。 (摘要由UMI缩短。)。

著录项

  • 作者

    Ratelle, Jean-Sebastien.;

  • 作者单位

    Ecole de Technologie Superieure (Canada).;

  • 授予单位 Ecole de Technologie Superieure (Canada).;
  • 学科 Mechanical engineering.
  • 学位 M.Eng.
  • 年度 2012
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号