首页> 外文学位 >Elevated atmospheric nitrate deposition in northern hardwood forests: Impacts on the microbial mechanisms of plant litter decomposition.
【24h】

Elevated atmospheric nitrate deposition in northern hardwood forests: Impacts on the microbial mechanisms of plant litter decomposition.

机译:北部硬木森林中大气硝酸盐沉积的升高:对植物凋落物分解微生物机制的影响。

获取原文
获取原文并翻译 | 示例

摘要

The burning of fossil fuels and subsequent atmospheric deposition of nitrate (NO3-) has increased the global input of nitrogen (N) to many terrestrial ecosystems. This has the potential to alter the cycling of carbon (C) in these ecosystems by reducing microbial-mediated decomposition. After assimilating anthropogenic N, the soil microbial community can release that N as ammonium (NH4+), which can inhibit the activity of lignin-degrading soil fungi. My primary objectives were to determine if increases in NO3- deposition have altered microbial community composition and function in upland temperate forests and if these changes have altered decomposition. I hypothesized that anthropogenic N deposition will fundamentally altered the flow of C in the microbial foodweb, which, in turn, will alter ecosystem-level patterns of C cycling. This idea was tested in four sugar maple-dominated northern hardwood ecosystems in Michigan which have received experimental N additions (30 kg NO3--N ha-1 y -1) since 1994. I determined microbial community composition by phospholipid fatty acid analysis and microbial function by measuring the activities of extracellular enzymes that decompose plant tissue. Measuring the flow of C through the soil microbial foodweb was achieved using 13C labeled compounds (cellobiose and vanillin) that are common products of lignocellulose decomposition. Increases in NO3- deposition significantly (p 0.05) suppressed the activity of beta-glucosidase, peroxidase, and phenol oxidase by at least 20%, enzymes which are responsible for degrading plant cell walls. Experimental N additions also have significantly (p 0.01) reduced the biomass of all microbial groups (-25% to -68%), not just the biomass of lignin-degrading microorganisms. The reduction in lignocellulose-degrading enzymes coupled with a significant 76% increase in soil organic carbon, and the decrease in microbial biomass indicates that NO3- deposition can potential reduce rates of decomposition. This may increase the capacity for terrestrial ecosystems to accumulate C through soil organic matter formation. Therefore, anthropogenic N deposition, by slowing the flow of C through the microbial foodweb, can be a potent modifier of ecosystem-level patterns of C cycling.
机译:化石燃料的燃烧和随后在大气中的硝酸盐(NO3-)沉积增加了全球对许多陆地生态系统的氮(N)输入。这有可能通过减少微生物介导的分解来改变这些生态系统中碳(C)的循环。吸收人为氮后,土壤微生物群落可以以铵态氮(NH4 +)的形式释放氮,从而抑制木质素降解性土壤真菌的活性。我的主要目标是确定NO3-沉积物的增加是否改变了陆地温带森林中微生物群落的组成和功能,以及这些改变是否改变了分解。我假设,人为氮的沉积将从根本上改变微生物食物网中碳的流动,进而改变生态系统水平的碳循环模式。自1994年以来,该想法已在密歇根州四个以糖枫为主导的北部硬木生态系统中进行了测试,该生态系统已添加了实验性添加的氮(30 kg NO3--N ha-1 y -1)。我通过磷脂脂肪酸分析和微生物测定了微生物群落组成通过测量分解植物组织的细胞外酶的活性来发挥功能。使用木质素纤维素分解的常见产物13C标记的化合物(纤维二糖和香草醛)可测量C通过土壤微生物食物网的流量。 NO3-沉积物的增加显着(p <0.05)将β-葡萄糖苷酶,过氧化物酶和苯酚氧化酶的活性抑制了至少20%,这些酶负责降解植物细胞壁。添加实验氮还显着(p <0.01)降低了所有微生物组的生物量(-25%至-68%),而不仅仅是木质素降解微生物的生物量。木质纤维素降解酶的减少,加上土壤有机碳的显着增加76%,以及微生物生物量的减少,表明NO3-的沉积可能降低分解速率。这可能会增加陆地生态系统通过土壤有机质形成而积累碳的能力。因此,通过减慢碳通过微生物食物网的流动,人为氮沉积可能是生态系统水平碳循环模式的有效调节剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号