首页> 外文学位 >Phase-field modeling of microstructure evolution in elastically inhomogeneous polycrystalline materials .
【24h】

Phase-field modeling of microstructure evolution in elastically inhomogeneous polycrystalline materials .

机译:弹性非均质多晶材料微观结构演化的相场模拟

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on modeling microstructure evolution in elastically inhomogeneous polycrystalline materials using the phase-field approach. Phase-field models for the diffusional processes and the structural transformations are successfully integrated with the inhomogeneous elasticity model of polycrystalline materials. By employing the Voigt notation scheme of the mechanical equilibrium equation, the computational efficiency for obtaining elastic solutions in polycrystalline materials is improved. The developed phase-field models are then applied to investigate the kinetic processes taking place in polycrystals.;To describe the diffusional processes in an elastically anisotropic polycrystalline binary solid solution, the chemical free energy model of the solid solution is integrated with the elastic strain energy model. The elastic interactions due to coherency elastic strain are incorporated by solving the mechanical equilibrium equation using an iterative-perturbation scheme taking into account elastic modulus inhomogeneity stemming from the grain orientation. The elastic strain energy of the solid solution itself of an elastically anisotropic polycrystal is also formulated based on Khachaturyan's theory, and discussed from the theoretical point of view. By applying the model, the precipitate-precipitate interaction across a grain boundary and the grain boundary segregation-precipitate interaction are microscopically investigated.;We then study strain-induced solute segregation at a grain boundary and solute drag effect on boundary migration using a phase-field model integrating grain boundary segregation and grain structure evolution. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. In addition, we systematically study the effect of misfit strain on grain boundary migration with solute drag. The drag force is theoretically analyzed based on Cahn's analytic theory. The simulation results are discussed based on our theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force is identified.;The developed phase-field model for structural change in polycrystals is modified and applied to the deformation twinning process in fcc materials. A phase-field model for modeling the microstructure evolution during deformation twinning in fcc crystals is firstly proposed. The order parameters are proportional to the shear strains defined in terms of twin plane orientations and twinning directions. The deformation energy as a function of shear strain is obtained using the first-principle calculations. The gradient energy coefficients are fitted to the twin boundary energies along the twinning planes and to the dislocation core energies along the directions that are perpendicular to the twinning planes. The elastic strain energy of a twinned structure is included using the Khachaturyan's elastic theory. The model is then extended to modeling the deformation twinning processes in polycrystals. We simulate the twinning processes and microstructures evolution under a number of fixed deformations and predicted the twinning plane orientations and microstructures in single- or polycrystals. Moreover, the hierarchical twinning process in a fcc crystal (Cu) is simulated by applying the phase-field model for twinning processes in polycrystals. The possibility of secondary and tertiary twinning processes under the proper deformation condition is identified from the simulations.;The developed models for both diffusional processes and structural transformations are also applied to modeling phase transformations in one of realistic materials systems, Ti alloys in which the phase transformation takes place through solute diffusion processes as well as bcc to hcp structural changes. First of all, the possible kinetic pathways during the phase transformation from the high temperature beta phase to the low temperature (alpha+beta) two-phase Ti alloys are investigated based on the thermodynamic stability analyses using a Ti-V binary alloy system. We demonstrate and discuss the proposed phase transformation sequences employing phase-field simulations. We then study the morphological evolution during the phase transformations in polycrystalline Ti alloy by applying the phase-field model for polycrystals to the system. The mechanisms of the alpha phase formation as well as the variant selection at or near a grain boundaries are investigated using the phase-field simulations.
机译:这项研究的重点是使用相场方法对弹性非均质多晶材料的微观结构演化进行建模。扩散过程和结构转变的相场模型已成功地与多晶材料的非均匀弹性模型集成在一起。通过使用机械平衡方程的Voigt表示法,提高了获得多晶材料弹性解的计算效率。然后将发展的相场模型用于研究多晶中发生的动力学过程。为了描述弹性各向异性多晶二元固溶体中的扩散过程,将固溶体的化学自由能模型与弹性应变能结合模型。考虑到由晶粒取向引起的弹性模量不均匀性,通过使用迭代摄动方案求解机械平衡方程,可以引入由于相干弹性应变而产生的弹性相互作用。弹性各向异性多晶体的固溶体本身的弹性应变能也根据Khachaturyan的理论来制定,并从理论的角度进行了讨论。通过应用该模型,微观研究了晶界上的沉淀-沉淀相互作用和晶界偏析-沉淀相互作用。;然后,我们使用相-相研究了应变诱发的溶质在晶界处的偏析和溶质对边界迁移的拖曳效应。晶界偏析与晶粒结构演化相结合的场模型数值研究了在静态平面边界处应变引起的晶界偏析,并使用解析解验证了平衡偏析成分分布。此外,我们系统地研究了失配应变对溶质阻力对晶界迁移的影响。基于卡恩的分析理论对阻力进行了理论分析。根据我们在弹性和化学阻力方面的理论分析讨论了仿真结果。确定了在给定驱动力下溶质扩散性最大化阻力的最佳条件。修改了已开发的多晶结构变化的相场模型并将其应用于fcc材料的变形孪生过程。首先提出了一种相场模型,用于模拟fcc晶体变形孪生过程中的微观结构演化。有序参数与根据孪生平面取向和孪生方向定义的剪切应变成比例。使用第一性原理计算获得变形能与剪切应变的函数关系。梯度能量系数沿着孪晶平面适合于孪晶边界能,并且沿着垂直于孪晶平面的方向适合于位错核能。使用Khachaturyan的弹性理论包括了孪生结构的弹性应变能。然后将该模型扩展为对多晶中的变形孪生过程进行建模。我们模拟了许多固定变形下的孪晶过程和微结构演化,并预测了单晶或多晶中的孪晶面取向和微结构。此外,通过应用多晶孪晶过程的相场模型,模拟了fcc晶体(Cu)中的分层孪晶过程。通过仿真确定了在适当变形条件下二次和三次孪生过程的可能性。所开发的扩散过程和结构转变模型也被用于模拟现实材料系统之一的钛合金中的相变。转化是通过溶质扩散过程以及从密件抄送到hcp结构变化进行的。首先,根据使用Ti-V二元合金系统进行的热力学稳定性分析,研究了从高温β相到低温(α+β)两相Ti合金相变过程中可能的动力学路径。我们演示并讨论了采用相场仿真技术提出的相变序列。然后,通过将多晶的相场模型应用于该系统,研究了多晶Ti合金的相变过程中的形貌演化。使用相场模拟研究了α相形成的机理以及晶界处或晶界附近的变体选择。

著录项

  • 作者

    Heo, Tae Wook.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号