首页> 外文学位 >Eco-physiological and molecular manipulation of leaf-level primary and secondary metabolism by arthropod herbivory.
【24h】

Eco-physiological and molecular manipulation of leaf-level primary and secondary metabolism by arthropod herbivory.

机译:节肢动物食草对叶片一级和二级代谢的生态生理和分子调控。

获取原文
获取原文并翻译 | 示例

摘要

Arthropod herbivory fundamentally alters ecosystem function and challenges agricultural productivity because herbivores alter photosynthesis. Feeding removes tissues and resources for growth but often introduces unseen physiological costs mediated by a reallocation in resources from growth to defense or by alterations to primary and secondary metabolism. The type of feeding damage depends on the mouthparts of the herbivore and, in part, determines the magnitude and mechanism by which photosynthesis is altered. However, there is a lack of understanding of these effects across model systems to evaluate conserved mechanisms of plant responses to herbivory. Documenting these responses from the observed and manipulated eco-physiological level down to the level of the gene can provide mechanistic understanding of how photosynthesis changes under herbivory and, ultimately, what initiates the reallocation of resources from primary to secondary metabolism (i.e., plant defense). Understanding the connections between genotype and phenotype can enhance our knowledge of ecosystem function amidst a rapidly changing climate by elucidating resource-driven trade-offs, and, as a result, forms the basis for this dissertation.;Plant responses to herbivory depend on the plant under attack and the attacking agent, but variability in the methods by which the interaction is observed makes it difficult to distinguish trends. As such, I synthesized the available literature in a review that elucidated four mechanisms for the alteration of photosynthesis at the leaf level. Arthropods sever vasculature, alter sink/source relationships, release autotoxic chemicals, or initiate a trade-off of resources from photosynthesis to defense in remaining leaf tissue. This review is presented in Chapter 2 and establishes the framework for the following chapters in which I investigate these mechanisms.;Because Earth is experiencing rapid environmental change, I surveyed leaf-level response of model forest species to multiple damage types when grown under predicted climate change conditions in Chapter 3. Elevated CO 2 attenuated damage for all damage types. As a result, the changing climate will, in part, attenuate the negative effects of herbivory on leaf-level photosynthesis. A common theme in this study and others is that damage to remaining leaf tissue from defoliation declines with time across species; however, contrary examples exist where inducible processes interact more with photosynthesis. Therefore I examined how inducible defense signaling and metabolite production altered photosynthesis in Chapter 4. I found that wound signaling immediately impaired electron transport, and defense synthesis correlated with sustained reductions in photosynthesis. Taken together, these data indicate a conserved mechanism underlying defense signaling modulates the trade-off from using resources for growth to defense.;As the preceding chapters suggest, hidden physiological costs can reduce photosynthesis relative to the damage type. Insect parasites of plants may influence leaf and canopy-level processes through the manipulation of sink/source dynamics by an unknown mechanism. In Chapter 5 I reexamined the grape-phylloxera system to reveal that the gall-forming insect parasite phylloxera induces functional stomata and globally reconfigures plant metabolism at the genomic level to enhance insect fitness. Although insect-induced stomata are rare in nature, the transcriptional pattern of gall formation is likely conserved among insect parasites and facilitates the galling habit by increasing competitive sink strength of the insect.;The following chapters provide a framework for assessing how arthropod herbivores alter leaf function across damage type and plant species. By characterizing mechanisms within model systems, I believe I have uncovered some of the physiological costs of herbivory that modulate resource-driven trade-offs in nature.
机译:节肢动物食草从根本上改变了生态系统的功能并挑战了农业生产力,因为食草动物改变了光合作用。饲喂会去除生长所需的组织和资源,但通常会引入看不见的生理成本,这是由资源从生长到防御的重新分配或初级代谢和次级代谢的改变所介导的。进食损害的类型取决于草食动物的口器,部分决定了光合作用发生变化的程度和机制。但是,缺乏对跨模型系统的这些效应来评估植物对食草植物反应的保守机制的了解。记录从观察到的和操纵的生态生理学水平到基因水平的这些反应,可以提供对食草作用下光合作用如何变化的机械理解,并最终了解是什么引发了资源从一级代谢到次级代谢的重新分配(即植物防御)。 。了解基因型和表型之间的联系可以通过阐明资源驱动的权衡来增强我们在快速变化的气候中的生态系统功能的知识,并因此构成了本文的基础。植物对草食动物的反应取决于植物受到攻击和攻击因素的影响,但是观察相互作用的方法的可变性使得很难区分趋势。因此,我在一篇综述中综合了现有文献,阐明了在叶片水平上改变光合作用的四种机制。节肢动物切断脉管系统,改变汇/源关系,释放自毒化学物质,或在光合作用到防御其余叶片组织的资源之间进行权衡。这篇综述在第2章中进行了介绍,并为接下来的章节建立了框架,在这些章节中我研究了这些机制。由于地球正在经历快速的环境变化,我调查了模型森林物种在预测气候下生长时对多种破坏类型的叶片水平响应更改第3章中的条件。所有损害类型的升高的CO 2衰减损害。结果,不断变化的气候将部分减轻草食对叶面光合作用的负面影响。在这项研究和其他研究中,一个共同的主题是,随着时间的流逝,物种间的落叶对剩余的叶片组织的损害会减少。然而,存在相反的例子,其中诱导过程与光合作用的相互作用更多。因此,在第4章中,我研究了诱导防御信号和代谢产物的产生如何改变光合作用。我发现伤口信号立即损害了电子运输,而防御合成与光合作用的持续降低相关。综上所述,这些数据表明防御信号的保守机制调节了从利用资源增长到防御的权衡。如前几章所述,相对于损害类型,隐藏的生理成本可以减少光合作用。植物的寄生虫可能通过未知机制操纵水槽/源动态来影响叶片和冠层水平的过程。在第5章中,我重新检查了葡萄-根瘤蚜虫系统,以发现形成gall虫的寄生虫根瘤蚜虫可诱导功能性气孔,并在基因组水平上全局重新配置植物代谢,从而增强昆虫的适应性。尽管昆虫诱导的气孔在自然界中很少见,但是虫寄生物中胆汁形成的转录模式可能是保守的,并且通过增加昆虫的竞争性下沉强度来促进胆汁习性。;以下各章提供了评估节肢动物食草动物如何改变叶片的框架。跨损害类型和植物种类起作用。通过描述模型系统中的机制,我相信我已经发现了一些食草动物的生理成本,这些成本调节了自然界中资源驱动的权衡。

著录项

  • 作者

    Nabity, Paul David.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Philosophy of Science.;Biology Botany.;Agriculture Agronomy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号