首页> 外文学位 >A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction.
【24h】

A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction.

机译:用于建模流体-结构相互作用的可杂交不连续伽勒金方法。

获取原文
获取原文并翻译 | 示例

摘要

As computational methods have matured and computing power has increased over the years, simulations have grown in complexity by attempting to accurately model both larger and more involved physical systems. Although the computational demand of these simulations has increased, the required accuracy of the solution has not decreased, resulting in simulations that can become prohibitively computationally expensive. New computational tools need to be developed that both maintain solution accuracy while minimizing the ever increasing computational cost in time and resources.;This dissertation presents a novel application of the recently developed hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid-structure interaction (FSI) problems. Current applications of the HDG method are reviewed and shown to be limited in scope to single-physics scenarios; however, they do include both solid and fluid problems, which are necessary for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, linear elastodynamics, nonlinear elastodynamics, Eulerian Navier-Stokes, and arbitrary Lagrangian-Eulerian Navier-Stokes are derived. The elasticity formulations are all written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials.;With these individual solid and uid formulations, the remaining challenge in FSI modeling is coupling together their disparate mathematics on the uid-solid interface. In past work (Sheldon, 2012; Sheldon et al., 2014), a continuous Galerkin FSI model with a variety of coupling strategies was implemented, which greatly facilitated the process of creating a novel HDG FSI model. HDG FSI modeling comes with its own unique challenges, however, which are discussed and then addressed by modifications to the established component formulations. The resultant HDG FSI model is then presented.;Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then numerically validated against benchmark problems proposed by Turek and Hron (Turek and Hron, 2006). The HDG results show increasing accuracy compared to the benchmark's measured quantities as simulations are refined. Finally, concluding remarks are presented and the future work necessary to turn this HDG FSI model into a production level tool is outlined.
机译:随着计算方法的成熟和计算能力的增加,这些年来,通过尝试对大型物理系统和更复杂物理系统进行精确建模,仿真的复杂性不断提高。尽管这些模拟的计算需求增加了,但解决方案的所需精度并未降低,导致模拟的计算量过大。需要开发新的计算工具,既要保持求解精度,又要使时间和资源上不断增加的计算成本降至最低。;本论文提出了最近开发的可混合不连续伽勒金有限元方法在多物理场仿真中的新应用。耦合的流固耦合问题。审查了HDG方法的当前应用,并显示其范围仅限于单物理场;但是,它们确实包括固相和流体问题,这对于FSI建模是必需的。利用这些已建立的模型,得出了用于线性弹性静力学,线性弹性动力学,非线性弹性动力学,欧拉Navier-Stokes和任意Lagrangian-Eulerian Navier-Stokes的HDG公式。弹性公式全部写在拉格朗日参考系中,非线性公式仅限于超弹性材料。对于这些单独的固体和uid公式,FSI建模中的剩余挑战是将其不同的数学耦合到uid-solid界面上。在过去的工作中(Sheldon,2012; Sheldon等,2014),实现了具有多种耦合策略的连续Galerkin FSI模型,极大地促进了创建新型HDG FSI模型的过程。 HDG FSI建模具有其自身独特的挑战,但是先讨论这些挑战,然后再通过修改已建立的组件配方来解决。然后给出了所得的HDG FSI模型。通过制造解决方案的方法对组件模型进行了验证,并显示了每个模型都以预期的速率收敛。然后针对Turek和Hron提出的基准问题,对各个组件以及完整的FSI模型进行数值验证(Turek和Hron,2006年)。 HDG结果表明,随着模拟的改进,与基准的测量量相比,准确性提高了。最后,介绍了总结,并概述了将该HDG FSI模型转变为生产级工具所需的未来工作。

著录项

  • 作者

    Sheldon, Jason P.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.;Mechanics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号