首页> 外文学位 >Regulating gene expression through DNA mechanics: Tightly looped DNA represses transcription.
【24h】

Regulating gene expression through DNA mechanics: Tightly looped DNA represses transcription.

机译:通过DNA力学调节基因表达:紧密环合的DNA抑制转录。

获取原文
获取原文并翻译 | 示例

摘要

It is now widely accepted that the mechanical state of DNA can play a major role in regulating the activity of RNA polymerase (RNAP). Not only have the global levels of supercoiling been shown to regulate transcription, but supercoiling has also been implicated in the transcriptional coupling of divergently oriented genes with closely spaced promoters. Additionally, many transcriptional repressors form tight loops of DNA by binding to multiple sites on a DNA template, challenging polymerases to transcribe a DNA template sustaining significant bending curvature. Many studies have provided evidence that the regulatory features of divergent promoter and loop-forming repressor systems share a dependence on the mechanical state of DNA, but these observations have been phenomenological in nature and fail to provide us with a mechanistic understanding of the relationship between RNAP activity as a function of the bending and twisting of DNA in these systems. Consequently, the direct role played by DNA mechanics in these systems remains unclear. I have hypothesized that the mechanical stress within highly bent DNA is itself sufficient to repress transcription. To test this hypothesis, I have developed an assay capable of quantifying the ability of bacteriophage T7 RNAP to transcribe small, circular DNA templates sustaining high levels of bending and torsional stresses. I have characterized both the pre-elongation and elongation kinetics using a highly untwisted 100 bp minicircle, an overtwisted 106 bp minicircle, and a mildly untwisted 108 bp minicircle template. In addition, I have used cryo-electron microscopy to directly observe the topological consequences of the torsional stress sustained within each DNA minicircle species at the single molecule level. Herein, I show that DNA minicircles on the order of 100bp can sustain significant torsional stress without relief by supercoiling, highly bent DNA is directly repressive to transcription, and torsional stress sustained within the DNA template modulates the elongation velocity and processivity of T7 RNAP. The data support a model in which DNA bending can directly control RNAP activity and call for more detailed studies to relate the mechanistic details emerging from this work to regulatory systems known to impart significant bends within the DNA template.
机译:现在,人们普遍认为,DNA的机械状态可以在调节RNA聚合酶(RNAP)的活性中起主要作用。不仅显示了超螺旋的整体水平调控转录,而且还涉及到超定向基因与紧密间隔的启动子的转录偶联中的超螺旋。另外,许多转录阻遏物通过与DNA模板上的多个位点结合形成DNA的紧密环,挑战聚合酶转录维持显着弯曲曲率的DNA模板。许多研究已经提供了证据,表明不同的启动子和环形成阻遏物系统的调控特征共同依赖于DNA的机械状态,但是这些观察本质上是现象学的,无法为我们提供对RNAP之间关系的机械理解。在这些系统中,DNA的活性取决于DNA的弯曲和扭曲。因此,尚不清楚DNA力学在这些系统中所起的直接作用。我假设高度弯曲的DNA内部的机械应力本身足以抑制转录。为了检验这个假设,我开发了一种能够量化噬菌体T7 RNAP转录维持高水平弯曲和扭转应力的圆形小DNA模板的能力的测定方法。我已经使用高度未扭曲的100 bp小圆圈,过度扭曲的106 bp的微圆圈和轻微扭曲的108 bp的微圆圈模板来表征了预伸长和伸长动力学。此外,我已经使用冷冻电子显微镜直接观察了在单个分子水平上每个DNA小环物种内承受的扭转应力的拓扑后果。在本文中,我表明100bp左右的DNA小圆环可以承受巨大的扭转应力而不会通过超螺旋减轻,高度弯曲的DNA直接抑制转录,并且DNA模板内承受的扭转应力调节T7 RNAP的延伸速度和加工性。数据支持一个模型,其中DNA弯曲可以直接控制RNAP活性,并需要进行更详细的研究,以将这项工作中出现的机制细节与已​​知在DNA模板内产生明显弯曲的调节系统联系起来。

著录项

  • 作者

    Lionberger, Troy Albert.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Molecular.;Biophysics General.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号