首页> 外文学位 >Depth-integrated free-surface flow with non-hydrostatic formulation.
【24h】

Depth-integrated free-surface flow with non-hydrostatic formulation.

机译:深度积分的自由表面流动和非静水配方。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the formulation of depth-integrated wave propagation and runup models from a system of governing equations for two-layer non-hydrostatic flows. The conventional two-layer non-hydrostatic formulation is re-derived from the continuity and Euler equations in non-dimensional form to quantify contributions from nonlinearity and dispersion and transformed into an equivalent integrated system, which separately describes the flux and dispersion-dominated processes. The formulation includes interfacial advection to facilitate mass and momentum exchange over the water column. This equation structure allows direct implementation of a momentum conserving scheme and a moving waterline technique to model wave breaking and runup without interference from the dispersion processes. The non-hydrostatic pressure, however, must be solved at the layer interface and the bottom simultaneously from the pressure Poisson equation, which involves a non-symmetric 9-band sparse matrix for a two-dimensional vertical plane problem. A parameterized non-hydrostatic pressure distribution is introduced to reduce the computational costs and maintain essential dispersion properties for modeling of coastal processes. The non-hydrostatic pressure at mid flow depth is expressed in terms of the bottom pressure with a free parameter, which is optimized to match the exact linear dispersion relation for the water depth parameter up to kd = 3. This reduces the integrated two-layer formulation to a hybrid system with unknown non-hydrostatic pressure at the bottom only and a tridiagonal matrix in the pressure Poisson equation. The hybrid system reduces to a one-layer model for a linear distribution of the non-hydrostatic pressure.;Fourier analysis of the governing equations of the two-layer, hybrid, and one-layer systems yield analytical expressions of the linear dispersion and shoaling gradient as well as the super and sub-harmonics transfer functions. The two-layer system reproduces the linear dispersion relation within a 5% error for water depth parameter up to kd = 11. The hybrid system with an optimized free parameter yields the same dispersion relation as the extended Boussinesq equations. The one-layer system shows a major improvement of the dispersion properties in comparison to the classical Boussinesq equations, but is not sufficient to model coastal wave transformation. The linear shoaling gradient serves as analytical tool to measure wave transformation over a plane slope although it is secondary compared to the linear dispersion relation. In comparison to second-order wave theory, the two-layer system shows overall underestimation of the nonlinearity, while the hybrid system reasonably describes the super and sub-harmonics for kd ranging from 0 to 3.;The two-layer, hybrid, and one-layer systems share common numerical procedures. A staggered finite difference scheme discretizes the governing equations in the horizontal dimension and the Keller box scheme reconstructs the non-hydrostatic terms in the vertical direction. A semi-implicit scheme integrates the depth-integrated flow in time with the non-hydrostatic pressure determined from a Poisson-type equation. Numerical results are verified and validated through a series of numerical and laboratory experiments selected to measure model capabilities in wave dispersion, shoaling, breaking, runup, drawdown, and overtopping. The two-layer model shows good performance in handling these processes through its integrated structure, but slightly underestimates the wave height in shoaling. The hybrid model provides comparable results with the two-layer system in general and slightly improved performance in shoaling calculations due to better approximation of nonlinearity. The one-layer model exhibits stable and robust performance even when the wave characteristics are beyond its applicable range.
机译:本文从两层非静水流的控制方程系统提出了深度积分波传播和运行模型的公式。从连续性和欧拉方程以无量纲形式重新推导了常规的两层非静液压公式,以量化非线性和色散的贡献,并转换为等效的集成系统,该系统分别描述了以通量和色散为主导的过程。该配方包括界面对流,以促进水柱上的质量和动量交换。这种方程式结构允许直接实施动量守恒方案和移动水线技术,以模拟波浪破碎和上升,而不会受到分散过程的干扰。然而,非静水压力必须从压力泊松方程同时在层界面和底部求解,泊松方程涉及二维垂直平面问题的非对称9带稀疏矩阵。引入了参数化的非静水压力分布,以减少计算成本并保持沿海过程建模所需的基本分散特性。中水深处的非静水压力用带有自由参数的底部压力表示,该参数经过优化以匹配水深参数的精确线性弥散关系,直到 kd = 3。这将集成的两层配方简化为仅在底部具有未知非静水压力且在压力Poisson方程中为三对角矩阵的混合系统。混合系统简化为用于非静水压力线性分布的一层模型。对两层,混合和一层系统的控制方程进行傅立叶分析,得出线性分散和浅滩的解析表达式梯度以及超级和次谐波传递函数。两层系统在水深参数高达 kital = 11的情况下,在5%的误差内再现了线性色散关系。具有优化自由参数的混合系统产生的色散关系与扩展的Boussinesq方程相同。与经典的Boussinesq方程相比,单层系统显示出色散特性的重大改进,但不足以建模海岸波变换。尽管与线性色散关系相比它是次要的,但线性浅滩梯度可作为分析工具来测量平面斜率上的波变换。与二阶波动理论相比,两层系统显示出总体上对非线性的低估,而混合系统则合理地描述了 kd 的范围为0至3的超谐波和次谐波。两层,混合和一层系统共享通用的数值过程。交错有限差分方案在水平方向离散控制方程,而Keller box方案在垂直方向重建非静液压项。半隐式方案将深度积分流及时与从泊松型方程确定的非静水压力积分。通过选择一系列数值和实验室实验来验证和验证数值结果,以测量波浪分散,浅滩,破裂,上升,下降和超顶的模型能力。两层模型通过其集成结构在处理这些过程中显示出良好的性能,但略低估了浅滩的波高。混合模型通常提供与两层系统可比的结果,并且由于更好地近似非线性,因此在浅滩计算中的性能略有提高。即使当波浪特性超出其适用范围时,单层模型也表现出稳定而强大的性能。

著录项

  • 作者

    Bai, Yefei.;

  • 作者单位

    University of Hawai'i at Manoa.;

  • 授予单位 University of Hawai'i at Manoa.;
  • 学科 Hydrology.;Engineering Marine and Ocean.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号