首页> 外文学位 >New Strategies for the Production of Butanol and 1,3-propanediol From Glycerol
【24h】

New Strategies for the Production of Butanol and 1,3-propanediol From Glycerol

机译:由甘油生产丁醇和1,3-丙二醇的新策略

获取原文
获取原文并翻译 | 示例

摘要

The increasing demand for use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology is generating a renewed interest in the fermentative production of n-butanol and 1,3-propanediol (1,3-PDO). In this context, glycerol, a by-product of biodiesel and ethanol production, arises as a potential substrate for this purpose. In this work, Clostridium pasteurianum DMS 525 was studied for butanol production using biodiesel-derived crude glycerol and pure glycerol as the carbon source. The main products obtained were butanol and 1,3-PDO. Moreover, the competitive nature of butanol and 1,3-PDO pathways was evident, and a shift to the former for higher glycerol concentrations was clearly observed. In preliminary experiments conducted in serum bottles using crude glycerol, the maximum glycerol consumption achieved was 31.83 +/- 0.98 g l-1, which resulted in 6.71 +/- 0.42 g l-1 of butanol and 6.86 +/- 0.51 g l-1 of 1,3- PDO. To improve the butanol tolerance of C. pasteurianum DSM 525, random chemical mutagenesis (N-ethyl-N-nitrosourea) in solid medium was performed. Experiments resulted in the isolation of colonies growing in culture medium containing 12 g l-1 butanol (except in the controls). Mutant cells showed 20 % higher butanol production than the parent strain when grown in liquid medium. Optimization of the culture medium composition and the inoculum age resulted in a glycerol consumption and a butanol titer of 45.62 +/- 3.81 g l-1and 12.4 +/- 0.26 g l- 1, respectively. The concentration of 1,3-PDO reached 7.45 +/- 0.86 g l-1. In particular, iron was found to play a key role in this process. Supplementation of 3 mg l-1 FeCl2.7H2O in the culture medium led to 140% increase in butanol titer. In pH-controlled experiments, it was possible to increase glycerol consumption to a maximum of 75 g l-1. Nevertheless, butanol production was around 9 g l-1and higher concentrations of 1,3-PDO were obtained (20 g l-1). Finally, the production of 1,3-PDO was studied in continuous culture (EGSB reactors). Two pre-treatments (heat and disruption) were applied to the granular sludge in order to minimize the methane production. 1,3-PDO was always found to be the main product and only small amounts of acids were detected. Molecular biology tools (DGGE, cloning and sequencing) were used to evaluate the microbial community. A maximum 1,3-PDO yield and productivity of 0.43 g g-1 and 57 g l-1d-1, respectively, were achieved in the reactor operated with nontreated granular sludge (control). The results obtained provide a deeper understanding of a complex process such as the anaerobic fermentation of glycerol using Clostridium spp. C. pasteurianum shows a great potential for butanol and 1,3-PDO production from crude glycerol. However, butanol toxicity seriously limits its titer, thus it is important to find ways to overcome this problem. On the other hand, this study proves the feasibility of 1,3-PDO production in EGSB reactors, which have the advantage of being operated under non-sterile conditions and represent a novel strategy to valorise glycerol generated as by-product in the biodiesel industry.
机译:使用可再生资源作为生产化学品的原料的需求不断增长,再加上生物技术的进步,引起了人们对发酵生产正丁醇和1,3-丙二醇(1,3-PDO)的兴趣。在这种情况下,作为生物柴油和乙醇生产的副产物甘油作为潜在的底物出现。在这项工作中,研究了巴氏梭菌DMS 525使用生物柴油衍生的粗甘油和纯甘油作为碳源生产丁醇的方法。得到的主要产物是丁醇和1,3-PDO。此外,丁醇和1,3-PDO途径的竞争性质是显而易见的,并且对于较高的甘油浓度,已明显观察到向前者的转变。在使用粗甘油在血清瓶中进行的初步实验中,最大甘油消耗量为31.83 +/- 0.98 g l-1,这导致6.71 +/- 0.42 g l-1的丁醇和6.86 +/- 0.51 g l- 1,3- PDO中的1个。为了提高巴氏梭菌DSM 525的丁醇耐受性,在固体培养基中进行了随机化学诱变(N-乙基-N-亚硝基脲)。实验导致分离出在含有12 g l-1丁醇的培养基中生长的菌落(对照除外)。在液体培养基中生长时,突变细胞的丁醇产量比亲本菌株高20%。培养基组成和接种物年龄的优化导致甘油消耗和丁醇效价分别为45.62 +/- 3.81 g l-1和12.4 +/- 0.26 g l-1。 1,3-PDO的浓度达到7.45 +/- 0.86g l-1。特别是,发现铁在此过程中起关键作用。在培养基中补充3 mg 1-1 FeCl2.7H2O导致丁醇滴度增加140%。在pH控制的实验中,有可能将甘油消耗量增加到最大75 g l-1。然而,丁醇的产量约为9 g l-1,并且获得了更高浓度的1,3-PDO(20 g l-1)。最后,在连续培养(EGSB反应器)中研​​究了1,3-PDO的产生。为了减少甲烷的产生,对颗粒污泥进行了两种预处理(加热和破碎)。始终发现1,3-PDO是主要产物,并且仅检测到少量的酸。分子生物学工具(DGGE,克隆和测序)用于评估微生物群落。在未经处理的颗粒污泥(对照)下运行的反应器中,最大1,3-PDO产量和生产率分别达到0.43 g g-1和57 g l-1d-1。获得的结果为更复杂的过程提供了更深入的了解,例如使用梭状芽孢杆菌对甘油进行厌氧发酵。巴氏梭菌显示出从粗甘油生产丁醇和1,3-PDO的巨大潜力。然而,丁醇毒性严重限制了其效价,因此寻找克服该问题的方法很重要。另一方面,这项研究证明了在EGSB反应器中生产1,3-PDO的可行性,该反应器具有在非无菌条件下运行的优势,并且代表了一种新的策略来对生物柴油行业中作为副产物产生的甘油进行增值。

著录项

  • 作者单位

    Universidade do Minho (Portugal).;

  • 授予单位 Universidade do Minho (Portugal).;
  • 学科 Engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号