首页> 外文学位 >Graphene Sulfur Composite: Synthesis, Characterization and Application in Energy Storage
【24h】

Graphene Sulfur Composite: Synthesis, Characterization and Application in Energy Storage

机译:石墨烯硫复合物的合成,表征及在储能中的应用

获取原文
获取原文并翻译 | 示例

摘要

Graphene is a new two dimensional carbon material, well known for its superior electrical conductivity, high surface area of over 2600 m 2/g, ultrathin thickness, structure flexibility and good mechanical properties. Nowadays, graphene has been used in fabrication of anode and cathode together with other materials for the lithium batteries. Elemental sulfur is one of the most promising cathode materials for the next generation lithium batteries, especially for the high-energy, high-power batteries that will be applied in powering hybrid electric vehicles and in storing electricity from renewable sources, due to its highest specific capacity, abundant resources, and low toxicity. In this thesis, we have synthesized graphene based composite materials through the development of an aqueous one-pot wet chemical method, extensively characterized the synthesized composites and explored them as cathode materials of lithium-sulfur battery. The main results of this thesis research are summarized as follows:;1. Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on the reduced graphene oxide sheets are prepared by developing a simple aqueous one-pot synthesis method, in which the formation of the composite is achieved through simultaneous oxidation of sulfide and reduction of graphene oxide. The sulfur contents in the SGC, determined by thermogravimetry and elementary analysis, have been adjusted in the range from 20.9% to 72.5%. (Chapter 3).;2. We have tested the electrochemical performances of the as-synthesized SGC materials as cathode of Li-S battery after optimizing electrolyte and voltage window. Under the electrochemical condition, we have found that the SGC-63.6%S can deliver a reversible capacity as high as 804 mAh/g after 80 cycles of charge-discharge at a current density of 312 mA/g (ca. 0.185 C), and 440 mAh/g after 500 cycles at 1250 mA/g (ca. 0.75 C). We have further shown that the SGC cathodes with the sulfur content around 60% in the SGC can achieve a maximal sulfur utilization. (Chapter 4).;3. It was shown that the commonly used heat treatment cannot improve the electrochemical performance of the SGC cathode because after heat treatment some sulfur initially dispersed uniformly on the reduced graphene oxide sheets aggregates into large particles, resulting in a severe polysulfides shuttle effect. On the other hand, the heat treatment study has confirmed once again the uniform dispersion of sulfur on the reduced graphene oxide in the SGC materials during the one pot synthesis. (Chapter 5).;4. In order to improve further the electric transportation property of the composite materials, we have synthesized multiwall carbon nanotubes-sulfur-graphene composite by developing an appropriate synthesis method. In this method, the surface of MWCNTs is modified at first with --OH groups, and then the --OH is replace by --SH via adding the Na 2S to grow sulfur on the MWCNTs' surface. The result demonstrated that the sulfur-MWCNTs composite can improve the coulombic efficiency of Li-S battery. In the case of MWCNTs-S-rGO with 30% MWCNTs and 10% reduced graphene oxide, the cathode can deliver a reversible capacity of 500 mAh/g after 200 full cycles with a low coulombic efficiency of 108%. (Chapter 6).
机译:石墨烯是一种新型的二维碳材料,以其优越的导电性,超过2600 m 2 / g的高表面积,超薄厚度,结构柔韧性和良好的机械性能而闻名。如今,石墨烯已与其他材料一起用于锂电池的阳极和阴极制造。元素硫是下一代锂电池最有希望的正极材料之一,特别是对于高能量,高功率电池,由于其最高的比重,将被用于为混合动力汽车和从可再生能源中存储电力容量大,资源丰富,毒性低。本文通过水一锅湿法化学方法的发展,合成了石墨烯基复合材料,对合成后的复合材料进行了广泛的表征,并将其作为锂硫电池的正极材料进行了探索。论文的主要研究工作概括如下:1。通过开发一种简单的含水一锅法合成方法,可以制备一种在还原的氧化石墨烯板上具有均匀分散的硫的还原硫的氧化石墨烯复合材料(SGC),该方法是通过同时硫化物的氧化和还原的方式来形成复合材料。氧化石墨烯。通过热重分析和元素分析确定的SGC中的硫含量已调整为20.9%至72.5%。 (第3章);; 2。在优化电解质和电压窗口后,我们已经测试了作为锂电池正极的合成SGC材料的电化学性能。在电化学条件下,我们发现SGC-63.6%S在312 mA / g(约0.185 C)的电流密度下进行80次充放电后可提供高达804 mAh / g的可逆容量,在1250 mA / g(约0.75 C)下经过500次循环后为440 mAh / g。我们进一步表明,SGC中硫含量约为60%的SGC阴极可以实现最大的硫利用率。 (第4章);; 3。结果表明,常用的热处理不能改善SGC阴极的电化学性能,因为在热处理后,一些最初均匀分散在还原的氧化石墨烯板上的硫会聚集成大颗粒,从而导致严重的多硫化物穿梭效应。另一方面,热处理研究再次证实了单罐合成过程中SGC材料中还原石墨烯氧化物上硫的均匀分散。 (第5章);; 4。为了进一步提高复合材料的电传输性能,我们通过开发合适的合成方法合成了多壁碳纳米管-硫-石墨烯复合材料。在该方法中,首先用--OH基团修饰MWCNTs的表面,然后通过添加Na 2S在MWCNTs表面上生长硫,用--SH取代--OH。结果表明,硫-多壁碳纳米管复合材料可以提高锂-硫电池的库仑效率。在具有30%MWCNT和10%还原氧化石墨烯的MWCNTs-S-rGO的情况下,阴极在200个完整循环后可提供500 mAh / g的可逆容量,库仑效率低至108%。 (第6章)。

著录项

  • 作者

    Sun, Hui.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Chemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号