首页> 外文学位 >Mechanical properties and structural evolution during deformation of fine grain magnesium and aluminum alloys.
【24h】

Mechanical properties and structural evolution during deformation of fine grain magnesium and aluminum alloys.

机译:细晶粒镁和铝合金变形过程中的力学性能和结构演变。

获取原文
获取原文并翻译 | 示例

摘要

Grain refinement improves the formability and the strength of wrought Mg and Al alloys. Ultrafine grain Mg is produced by a new process for severe plastic deformation, called Alternate Biaxial Reverse Corrugation (ABRC). Fine grain structure in Al is produced by creating a new composition capable of precipitating dispersed intermetallics in the alloy.; Slip and twinning subdivide an initial bimodal grain structure of Mg alloy during processing. Dynamic recovery and recrystallization lead to the formation of nearly uniform ultrafine microstructure of average grain size 1.4mum, containing many submicron grains. In Mg, twinning causes grain refinement in the early stages, but it is inhibited when grain size becomes finer. A strong basal texture is created after several corrugation and flattening steps, but eventually weakened as grain size becomes finer. Grain rotation and possible dynamic recrystallization are believed to cause a drop in the intensity of basal texture.; At room temperature, grain refinement causes a considerable increase in strain rate sensitivity of flow stress (m) leading to the enhancement of post-uniform elongation. Yield strength increases, and becomes more isotropic due to the inhibition of twinning in fine grain Mg alloy, compared to coarse grain alloy. Normal anisotropy ratio (R value) for fine grain Mg at room temperature is higher than that for coarse grain alloy.; At warm temperatures, formability is significantly increased due to an increase in strain rate sensitivity of flow stress and diffuse quasistable flow in fine grain Mg, as compared with coarse grain alloy. At 200°C and strain rates below 2x10-4s-1, the fine grain alloy demonstrates a high rate of strain hardening up to a true strain of 0.6 in addition to its high strain rate sensitivity (m ∼ 0.4-0.5), leading to a high elongation of 300-400%. There is competition between dynamic grain growth and grain refinement during straining at warm temperature. Mg exhibits isotropic deformation behavior (R ∼ 1.0) at elevated temperatures in sharp contrast with its room temperature behavior, i.e. textural effects are minimized.; For Al-based alloy containing low Mg (Al-3wt% Mg-1.3wt% Zn-1wt% Cu-0.5wt% Sc-0.2wt% Zr), the effects of different thermomechanical treatments on recrystallization, superplastic response, and age-hardening response are investigated. This alloy produces tensile elongations over 400% at a strain rate of 10-3 s-1 and 500--525°C. During superplastic deformation, dynamic recrystallization and strain-induced grain growth occur to cause a bimodal microstructure to transform into a uniform structure with a stable grain size. Room temperature yield strength of this new alloy is 235MPa, considerably higher than conventional Al-Mg alloys containing higher levels of Mg.
机译:细化晶粒可以改善变形的Mg和Al合金的可成形性和强度。超细晶粒镁是通过一种新的严重塑性变形工艺生产的,这种工艺称为交替双轴反向皱纹(ABRC)。 Al中的细晶粒结构是通过产生一种新的成分而产生的,该成分能够沉淀合金中分散的金属间化合物。在加工过程中,滑移和孪生细分了Mg合金的初始双峰晶粒结构。动态恢复和再结晶导致形成平均晶粒尺寸为1.4μm的几乎均匀的超细微结构,其中包含许多亚微米晶粒。在Mg中,孪晶在早期引起晶粒细化,但是当晶粒尺寸变细时,孪晶被抑制。经过数次波纹和压平步骤后,会产生很强的基础纹理,但随着晶粒尺寸变细,最终会减弱。据信晶粒旋转和可能的动态重结晶会导致基础纹理强度下降。在室温下,晶粒细化会导致流动应力(m)的应变速率敏感性显着提高,从而导致均匀后伸长率的提高。与细晶粒Mg合金相比,由于抑制了细晶粒Mg合金中的孪晶,屈服强度增加,并且变得更加各向同性。室温下,细晶粒镁的正常各向异性比(R值)高于粗晶粒合金。在温暖的温度下,与粗粒合金相比,由于细晶粒Mg中流动应力的应变率敏感性和准可扩散流动的应变率敏感性增加,可成形性显着提高。在200°C且应变速率低于2x10-4s-1时,细晶粒合金除了具有高应变速率敏感性(m〜0.4-0.5)之外,还显示出高达0.6的真实应变的高应变硬化速率,从而导致伸长率高达300-400%。在高温下应变期间,动态晶粒长大与晶粒细化之间存在竞争。镁在升高的温度下表现出各向同性的变形行为(R〜1.0),与室温下的行为形成鲜明对比,即,结构效应最小。对于含低Mg的Al基合金(Al-3wt%Mg-1.3wt%Zn-1wt%Cu-0.5wt%Sc-0.2wt%Zr),不同的热机械处理对重结晶,超塑性响应和时效的影响研究硬化反应。这种合金在10-3 s-1和500--525°C的应变速率下产生超过400%的拉伸伸长率。在超塑性变形过程中,发生动态再结晶和应变诱发的晶粒长大,从而导致双峰微结构转变为具有稳定晶粒尺寸的均匀结构。这种新合金的室温屈服强度为235MPa,大大高于含镁量较高的传统Al-Mg合金。

著录项

  • 作者

    Yang, Qi.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.; Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号