首页> 外文学位 >Design of 5-MB/S fractional -N RF transmitter in 900 MHz ISM band using GMSK data modulation techniques.
【24h】

Design of 5-MB/S fractional -N RF transmitter in 900 MHz ISM band using GMSK data modulation techniques.

机译:使用GMSK数据调制技术设计900 MHz ISM频段的5-MB / S分数-N RF发射机。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on the development of a chip with intended application for use in an implanted neural data telemetry system. The specific research foci include the modeling of noise in a Fractional-N (Frac-N) synthesizer and development of a 5 Mbps transmitter in 900 MHz ISM band using Frac-N Gaussian Minimum Shift Keying (GMSK) data modulation techniques.;Mathematical model is developed for calculating rms phase error and determining spurs in the output of Frac-N phase lock loop (PLL). The model describes noise contributions due to the charge pump (CP), the phase frequency detector (PFD), the loop filter, the voltage controlled oscillator (VCO), and the delta-sigma modulator (DSM). Models are presented for the effects of static CP gain mismatch, CP dynamic mismatch and PFD reset delay mismatch. A simple analytic expression shows the level of Delta Sigma sequence noise caused by static CP current mismatch. It is further shown that unequal rise time and fall time constants of the CP result in dynamic mismatch noise. Reset delay mismatch in PFD is shown to contribute significantly to close-in phase noise. The model takes into account the reduction in CP thermal and flicker noise due to the changing duty cycle of Frac-N CP. The model is therefore useful in characterizing the noise performance of Frac-N at the system-level and simplifying the design of fractional-N synthesizers and transmitters. Analytical and simulated results are compared and show good agreement with prior published data on Frac-N realizations.;The behavioral model of Frac-N PLL helped in the system level design of a 5 Mbps Frac-N GMSK data transmitter. The noise contributions of the PLL macros obtained from the system level design, aided in transistor level design of the macros of Frac-N PLL. In particular, careful attention was paid to the design of CP and PFD to minimize the in-band noise due to CP/PFD non-linearities. The minimization of the out-of-band phase noise was done through proper selection of the topology and the order of DSM.;The prototype Frac-N chip was designed in LSV, 0.18μm mixed-mode/RF CMOS process. The chip comprises of PFD, CP, on-chip filter, prescalar, and on-chip LC-VCO. For testing, the Frac-N IC was mounted on a custom built impedance controlled printed circuit board (PCB). The digital DSM and GMSK filter were realized in FPGA mounted on another evaluation board. This evaluation board was interfaced with the Frac-N PCB to provide the prescalar control signals from the FPGA to the Frac-N IC. The PLL loop bandwidth was set to 2.1 MHz to perform in-loop modulation. Measured results show MASH-12 Frac-N at 925 MHz with an in-band rms phase error of 0.84° over 2.25 MHz bandwidth and out-of-band rms phase error of 3.72°. These measured phase noise is in good correlation with the phase noise predicted by the behavioral model of Frac-N PLL.
机译:本论文着重于芯片的开发,其预期的应用是用于植入式神经数据遥测系统。具体的研究重点包括分数N(Frac-N)合成器中的噪声建模,以及使用Frac-N高斯最小频移键控(GMSK)数据调制技术开发900 MHz ISM频带中的5 Mbps发射机的数学模型。用于计算均方根相位误差并确定Frac-N锁相环(PLL)输出中的杂散。该模型描述了由于电荷泵(CP),相位频率检测器(PFD),环路滤波器,压控振荡器(VCO)和delta-sigma调制器(DSM)引起的噪声贡献。提出了针对静态CP增益不匹配,CP动态不匹配和PFD复位延迟不匹配的影响的模型。一个简单的解析表达式显示了由静态CP电流不匹配引起的Delta Sigma序列噪声水平。进一步表明,CP的上升时间和下降时间常数不相等会导致动态失配噪声。 PFD中的复位延迟失配表现为对近相噪声有很大影响。该模型考虑了由于Frac-N CP占空比变化而导致的CP热和闪烁噪声的降低。因此,该模型可用于表征系统级Frac-N的噪声性能,并简化分数N合成器和发射机的设计。分析和仿真结果进行了比较,并与先前发表的有关Frac-N实现的数据相吻合。; Frac-N PLL的行为模型有助于5 Mbps Frac-N GMSK数据发送器的系统级设计。从系统级设计获得的PLL宏的噪声贡献有助于Frac-N PLL宏的晶体管级设计。尤其要特别注意CP和PFD的设计,以最大程度地减少由于CP / PFD非线性引起的带内噪声。通过适当地选择拓扑结构和DSM的顺序来使带外相位噪声最小化。原型Frac-N芯片采用LSV,0.18μm混合模式/ RF CMOS工艺设计。该芯片包括PFD,CP,片上滤波器,预分频器和片上LC-VCO。为了进行测试,将Frac-N IC安装在定制的阻抗控制印刷电路板(PCB)上。数字DSM和GMSK滤波器通过安装在另一个评估板上的FPGA实现。该评估板与Frac-N PCB接口,以提供从FPGA到Frac-N IC的预分频控制信号。 PLL环路带宽设置为2.1 MHz,以执行环路调制。测量结果显示,MASH-12 Frac-N在925 MHz时在2.25 MHz带宽范围内的带内均方根相位误差为0.84°,带外均方根相位误差为3.72°。这些测得的相位噪声与Frac-N PLL行为模型预测的相位噪声具有良好的相关性。

著录项

  • 作者

    Arora, Himanshu.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号