首页> 外文学位 >Genetic Modification of Adeno-Associated Virus Capsid for Enhanced Motor Neuron Delivery and Retrograde Transport.
【24h】

Genetic Modification of Adeno-Associated Virus Capsid for Enhanced Motor Neuron Delivery and Retrograde Transport.

机译:腺相关病毒衣壳的遗传修饰,用于增强运动神经元传递和逆行运输。

获取原文
获取原文并翻译 | 示例

摘要

Gene therapy has the potential to treat or cure a variety of monogenetic diseases. Adeno-associated virus (AAV), a human parvovirus, is a particularly promising vector for several reasons. AAV is non-pathogenic, capable of site-specific integration into the host cell genome, and long-term gene expression. However, a relatively small genetic payload, roughly 4.7kb or 2.3kb for self-complimentary vectors, limits its potential as a gene therapy vector. AAV is classified as a dependovirus, because its gene expression is dependent on gene products of a helper virus, further recombinant vectors do not integrate predictably into the host cell genome and are maintained as episomes, like the parental virus. The very broad tropism of the wild type virus is both beneficial and detrimental to its development as a therapeutic, because it can transduce a large number of cells however is limited in its ability to specifically transduce single cell types. We will examine the potential to narrow the vector's tropism to motor neurons for the purpose of treating neurodegenerative disease. An ideal vector will exhibit a high specificity for motor neurons as well as a high level of retrograde transport, a characteristic AAV already exhibits although inefficiently.;The ability to modify the natural tropism of AAV could greatly enhance its potential as a gene therapy vector. Previous studies have shown that AAV will tolerate genetic insertion of short linear peptides at specific locations in the capsid proteins. A recently identified 12 amino acid peptide, tet1, exhibits a binding capacity similar to that of tetanus toxin c-terminal fragment, for the Gt1b receptor located at the neuro-muscular junction of motor neurons. We have shown that genetic insertion of this peptide increases AAV's specificity for motor neurons, while simultaneously reducing its specificity for non-neuronal cells. However, modifications can result in poor capsid protein folding or assembly. Recent molecular dynamics models predict targeting ligand and "linker sequences" least likely to negatively effect capsid folding and assembly. Our tet1-modified vector does indeed exhibit markedly decreased vector yield relative to unmodified vector. We will examine the potential of alternate insertion sites to alleviate the decrease in vector yield while maintaining motor neuron specificity. Another approach to achieve effective transduction of spinal and peripheral motor neurons may involve intravenous injection of recombinant AAV9 vector. Previous studies suggest that rAAV9 transduces motor neurons both after crossing the blood brain barrier (BBB) and peripheral vascular endothelium. However, other studies suggest that rAAV9 preferentially transduces astrocytes in vivo. We hypothesize that incorporation of our tet1 peptide in the capsid monomers of AAV9, guided by our understanding of sites that tolerate short linear peptide inserts in rAAV2 and rAAV1, will increase the specificity of rAAV9 for both spinal and peripheral motor neurons.
机译:基因疗法具有治疗或治愈各种单基因疾病的潜力。腺伴随病毒(AAV)是一种人类细小病毒,由于多种原因,它是一种特别有前途的载体。 AAV是非致病性的,能够位点特异性整合到宿主细胞基因组中,并能长期表达。然而,相对较小的遗传有效载荷,对于自我互补载体约为4.7kb或2.3kb,限制了其作为基因治疗载体的潜力。 AAV被归类为依赖病毒,因为其基因表达依赖于辅助病毒的基因产物,进一步的重组载体无法如预期般整合到宿主细胞基因组中,并像附加病毒一样被维持为附加体。野生型病毒非常广泛的嗜性既有利又有害于其作为治疗剂的发展,因为它可以转导大量细胞,但是特异性转导单细胞类型的能力受到限制。我们将研究将载体的向性性缩小到运动神经元的潜力,以治疗神经退行性疾病。理想的载体将表现出对运动神经元的高特异性以及高水平的逆行转运,尽管效率低下,已经显示出特征性的AAV。改变AAV天然向性的能力可以极大地增强其作为基因治疗载体的潜力。先前的研究表明,AAV可以耐受衣壳蛋白中特定位置的短线性肽的基因插入。最近鉴定出的12个氨基酸的肽tet1对位于运动神经元神经肌肉接头处的Gt1b受体具有类似于破伤风毒素c端片段的结合能力。我们已经表明,该肽的基因插入增加了AAV对运动神经元的特异性,同时降低了其对非神经元细胞的特异性。然而,修饰可导致衣壳蛋白折叠或组装不良。最近的分子动力学模型预测靶向配体和“接头序列”最不可能对衣壳折叠和组装产生负面影响。相对于未修饰的载体,我们的tet1修饰的载体确实确实表现出明显降低的载体产量。我们将研究替代插入位点减轻载体产量下降同时保持运动神经元特异性的潜力。实现脊髓和周围运动神经元有效转导的另一种方法可能涉及静脉内注射重组AAV9载体。先前的研究表明,rAAV9在穿过血脑屏障(BBB)和周围血管内皮后均能转导运动神经元。但是,其他研究表明,rAAV9在体内优先转导星形胶质细胞。我们假设将tet1肽掺入AAV9的衣壳单体中,这是由我们对可耐受rAAV2和rAAV1中短线性肽插入片段的位点的理解所指导的,这将增加rAAV9对脊髓和周围运动神经元的特异性。

著录项

  • 作者

    Davis, Adam S.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biophysics General.;Biology Virology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号