首页> 外文学位 >Nanoparticle additives for multiphase systems: Synthesis, formulation and characterization.
【24h】

Nanoparticle additives for multiphase systems: Synthesis, formulation and characterization.

机译:用于多相系统的纳米颗粒添加剂:合成,配制和表征。

获取原文
获取原文并翻译 | 示例

摘要

Study on nanoparticle additives in multiphase systems (liquid, polymer) are of immense interest in developing new product applications. Critical challenges for nanoparticle additives include their synthesis, formulation and characterization. These challenges are addressed in three application areas: nanofluids for engine lubrication, ultrathin nanocomposites for optical devices, and nanoparticle size distribution characterization.;Nanoparticle additives in oligomer mixtures can be used to develop extended temperature range motor oils. A model system includes poly(alpha-olefin) based oligomers with a modest fraction of poly(dimethylsiloxane) oligomers along with graphite as nanoparticle additive. Partition coefficients of each oligomer are determined since the oligomer mixture phase separated at temperatures less than -15 °C. Also, the surface of graphite additive is quantitatively analyzed and modified via silanization for each oligomer. Thus, upon separation of the oligomer mixture, each functionalized graphite additive migrates to its preferred oligomers and forms a uniform dispersion.;Similarly, nanoparticle additives in polymer matrices can be used to develop new low haze ultrathin film optical coatings. A model system included an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles deposited on glass and polycarbonate substrates. Surface (root mean squared roughness, Wenzel's contact angle) and optical properties (haze) of these self assembled experimental surfaces were compared to simulated surface structures. Manipulating the size ratios of silica nanoparticle mixtures varied the average surface roughness and the height distributions, producing multimodal structures with different packing fractions.;In both nanofluid and nanocomposite applications, nanoparticle additives tend to aggregate/agglomerate depending on various factors including the state of nanoparticles (powder, dispersion). A set of well-characterized ceria and titania nanoparticle products from commercial sources along with in-lab synthesized nanoparticles were studied via fractal theory. Fractal coefficients were obtained through two-dimensional images (from electron microscopy) and particle size distributions (from electron microscopy and dynamic light scattering). For some arbitrary collections of aggregated nanoparticle materials, the fractal coefficients via two-dimensional images correlated well to the average primary particle size. This complementary tool could be used along with conventional nanoparticle characterization techniques when not much is known about the nanoparticle surfaces to characterize agglomeration or aggregation phenomena.;KEYWORDS: Phase behavior, Surface modification, Surface roughness, Haze, Fractal theory.
机译:多相系统(液体,聚合物)中纳米粒子添加剂的研究对于开发新产品应用具有极大的兴趣。纳米颗粒添加剂的关键挑战包括其合成,配制和表征。这些挑战在三个应用领域得到了解决:用于发动机润滑的纳米流体,用于光学设备的超薄纳米复合材料以及纳米粒度分布表征。低聚物混合物中的纳米颗粒添加剂可用于开发扩展温度范围的机油。模型系统包括基于聚(α-烯烃)的低聚物和适量的聚(二甲基硅氧烷)低聚物以及石墨作为纳米颗粒添加剂。确定每种低聚物的分配系数,因为低聚物混合物相在低于-15°C的温度下会分离。另外,对每种低聚物通过硅烷化对石墨添加剂的表面进行定量分析和改性。因此,在分离低聚物混合物时,每种官能化的石墨添加剂迁移至其优选的低聚物并形成均匀的分散体。类似地,聚合物基质中的纳米颗粒添加剂可用于开发新的低雾度超薄薄膜光学涂料。模型系统包括丙烯酸酯单体作为连续相,并在玻璃和聚碳酸酯基材上沉积了二氧化硅纳米颗粒的单分散或双分散混合物。将这些自组装实验表面的表面(均方根粗糙度,Wenzel接触角)和光学特性(雾度)与模拟表面结构进行了比较。操纵二氧化硅纳米粒子混合物的尺寸比会改变平均表面粗糙度和高度分布,从而产生具有不同堆积分数的多峰结构。在纳米流体和纳米复合材料应用中,纳米粒子添加剂往往会根据各种因素(包括纳米粒子的状态)发生聚集/附聚。 (粉末,分散液)。通过分形理论研究了一组商品化的氧化铈和二氧化钛纳米颗粒产品以及实验室合成的纳米颗粒。分形系数是通过二维图像(来自电子显微镜)和粒度分布(来自电子显微镜和动态光散射)获得的。对于聚集的纳米颗粒材料的一些任意集合,通过二维图像的分形系数与平均一次粒径的相关性很好。当对纳米颗粒表面知之甚少以表征团聚或聚集现象时,该辅助工具可与常规纳米颗粒表征技术一起使用。关键词:相行为,表面改性,表面粗糙度,雾度,分形理论。

著录项

  • 作者

    Kanniah, Vinod.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Materials science.;Nanotechnology.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号