首页> 外文学位 >Single ion dynamics inside magnetic field-reversed configuration.
【24h】

Single ion dynamics inside magnetic field-reversed configuration.

机译:反向磁场内部的单离子动力学。

获取原文
获取原文并翻译 | 示例

摘要

The field-reversed configuration (FRC) is a toroidal-shaped magnetic-field geometry used for confining plasmas for the purpose of the controlled, safe, steady-state production of fusion energy. As a result of angular invariance of the Solov'ev equilibrium, used for analytic and numerical study of the FRC, the full three dimensional Hamiltonian system can be expressed as two coupled highly nonlinear oscillators. Due to high nonlinearity of the equations of motion, the behavior of the system is highly complex, showing regimes of both chaotic and integrable motion, depending on the constants of motion and geometry of the FRC. Using analytic techniques from nonlinear dynamics and Poincare surface-of-section plots, the structure of phase space is investigated and shown to be highly sensitive to the parameters of the system. In the limit of a highly elongated geometry, there is a separation of time scales between the axial and radial motion of the ion, leading to adiabatic chaos. Integrability criteria are derived which distinguish between near-integrable and chaotic trajectories, based on the crossing of the phase-space separatrix. An averaged one-dimensional potential for near-integrable motion is derived. It is found that orbits with high radial energies are more integrable and confined closer to the midplane, suggesting that high temperature plasmas may be more stable and have lower resistivity. The affect of a small odd-parity rotating magnetic field (RMF) on ion heating inside the elongated FRC is investigated. The addition of RMF breaks the angular invariance leading to a more chaotic system. It is found that cyclotron orbits tend to interact more regularly with RMF than figure-8 orbits. Stochastic heating for cyclotron orbits occurs in a series of random steps in the regions of field-reversal, indicating that magnetic nulls are important to ion heating. The maximum energy gains are large, particularly for cyclotron orbits, confirming the affectiveness off odd-parity RMF in heating the ions. The interaction of figure-8 orbits with RMF in the midplane is investigated analytically and displays a set of resonances that increase and overlap closer to the phase-space separatrix.
机译:场反转配置(FRC)是一种环形磁场,用于限制等离子体,以控制,安全,稳定地产生聚变能。由于用于FRC的解析和数值研究的Solov'ev平衡的角度不变,整个三维哈密顿系统可以表示为两个耦合的高度非线性振荡器。由于运动方程的高度非线性,系统的行为非常复杂,取决于运动常数和FRC的几何形状,同时显示出混沌运动和可积分运动。使用来自非线性动力学和庞加莱横截面图的分析技术,研究了相空间的结构,并证明其对系统参数高度敏感。在高度伸长的几何形状的极限内,离子的轴向和径向运动之间存在时间刻度的分隔,从而导致绝热的混乱。基于相空间分离线的交叉,得出可区分性标准,该标准区分了近可整合轨迹和混沌轨迹。得出了近可积分运动的平均一维电势。发现具有高径向能量的轨道更易于积分,并被限制在更靠近中平面的位置,这表明高温等离子体可能更稳定且电阻率更低。研究了小的奇偶校验旋转磁场(RMF)对细长FRC内部离子加热的影响。 RMF的添加打破了角度不变性,导致系统更加混乱。发现回旋加速器轨道与RMF的相互作用比图8轨道更规则。回旋加速器轨道的随机加热发生在场反转区域中的一系列随机步骤中,这表明零磁性对离子加热很重要。最大的能量增益很大,尤其是对于回旋加速器轨道,这证实了奇偶校验RMF对加热离子的影响。通过分析研究图8轨道与中平面RMF的相互作用,并显示出一组共振,这些共振在相空间分离线附近增加并重叠。

著录项

  • 作者

    Landsman, Alexandra Sasha.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号