首页> 外文学位 >Moisture influence on the electrical properties of cross-linked polyethylene/silica nanocomposites.
【24h】

Moisture influence on the electrical properties of cross-linked polyethylene/silica nanocomposites.

机译:水分对交联聚乙烯/二氧化硅纳米复合材料电性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

During the last twenty years, nanodielectrics have emerged as an important dielectric material system to provide advanced dielectric properties for power equipment applications, among which, cross-linked polyethylene (XLPE)/silica nanocomposites are regarded as a promising candidate for power cables in the future. Despite the various improvements achieved in XLPE/silica nanocomposites compared to XLPE base resin, the influence of moisture has not been fully explored. For cable insulation materials, water treeing is of particular interest. Therefore, this thesis focuses on the influence of moisture on the electrical properties of XLPE/silica nanocomposites to reveal the facts and mechanisms related to the moisture diffusion and aging phenomena in XLPE/silica nanocomposites in a humid environment.;First, moisture diffusion was monitored in different humid environments. XLPE/silica nanocomposites were found to have an increased moisture uptake compared to XLPE base polymer due to the inclusion of silica particles. Water shells, which have a higher water weight percent than that in XLPE matrix, are believed to form around silica particles/aggregates.;Second, electrical characterization techniques such as dielectric spectroscopy, pulseelectro- acoustic analysis, 60 Hz AC breakdown as well as water treeing were utilized to investigate the influence of moisture on the electrical properties of XLPE/silica nanocomposites. Water shells and the change of the inter-particle/cluster distances due to loading levels and dispersion state are believed to be the two major factors that govern the dielectric behavior in wet XLPE/silica nanocomposites. At a high loading level of 12.5 wt%, percolation of water shells drastically changed the dielectric performance of the composites including increased permittivity, conduction and reduced dielectric strength. However, 5 wt% nanocomposites, even with elevated moisture content, perform comparably to XLPE. At the same time, water treeing was restricted in XLPE/silica nanocomposites regardless of the surface functionalization of the fillers. The impeding of chain movement and the growth direction alternation are attributed to some of the possible reasons to restrict water transport. At the same time, the reduction of interparticle distance due to increased particle weight percent in a nanocomposite might also correlate to the water treeing depression in ways that fatigue effect might be reduced.;Third, a simplified structure model was built for the aggregated nanocomposites to estimate the thickness needed to initiate the percolation of water shells. For 12.5 wt% nanocomposites (aggregated and applied specifically to the nanocomposites studied in this thesis) with a water shell thickness of approximately 50 nm, percolation could be initiated.;At the same time, nanocomposites with near-ideal dispersion achieved by Nanoinfusion techniques were also investigated and compared with the XLPE/silica nanocomposites prepared by conventional mixing techniques. These samples shows that a loading as low as 1 wt% can achieve improvements similar to aggregated XLPE/silica nanocomposites at much higher loadings. This data can be found in the Appendix.
机译:在过去的二十年中,纳米电介质已成为一种重要的介电材料系统,可为电力设备提供先进的介电性能,其中,交联聚乙烯(XLPE)/二氧化硅纳米复合材料被认为是未来电力电缆的有希望的候选者。尽管与XLPE基础树脂相比,XLPE /二氧化硅纳米复合材料实现了各种改进,但尚未充分研究水分的影响。对于电缆绝缘材料,水树特别重要。因此,本文着眼于水分对XLPE /二氧化硅纳米复合材料电性能的影响,揭示了与XLPE /二氧化硅纳米复合材料在潮湿环境中的水分扩散和老化现象有关的事实和机理。在不同的潮湿环境中。发现由于包含二氧化硅颗粒,与XLPE基础聚合物相比,XLPE /二氧化硅纳米复合材料具有增加的水分吸收。据信水壳的水重量百分比高于XLPE基质中的水壳,形成于二氧化硅颗粒/聚集体周围。其次,电表征技术,例如介电谱,脉冲电声分析,60 Hz AC击穿以及水利用树状结构研究水分对XLPE /二氧化硅纳米复合材料电性能的影响。据信水壳以及由于载荷水平和分散状态引起的颗粒间/簇间距离的变化是控制湿XLPE /二氧化硅纳米复合材料中介电行为的两个主要因素。在12.5wt%的高负载水平下,水壳的渗透极大地改变了复合材料的介电性能,包括增加的介电常数,导电性和降低的介电强度。但是,即使水分含量提高,5%的纳米复合材料的性能也与XLPE相当。同时,不管填料的表面功能如何,XLPE /二氧化硅纳米复合材料中的水树都受到限制。阻碍链运动和生长方向交替的原因归因于限制水运输的某些可能原因。同时,由于纳米复合材料中颗粒重量百分比的增加而导致的颗粒间距离的减少也可能与水树凹陷相关联,从而可能会降低疲劳效应。第三,建立了一种聚集的纳米复合材料的简化结构模型。估计启动水壳渗滤所需的厚度。对于水壳厚度约为50 nm的12.5 wt%纳米复合材料(专门针对本文研究的纳米复合材料进行聚合和应用),可以引发渗滤。同时,通过纳米注入技术获得了具有近乎理想分散性的纳米复合材料。还研究并与通过常规混合技术制备的XLPE /二氧化硅纳米复合材料进行了比较。这些样品表明,低至1 wt%的负载量可以在更高的负载量下实现类似于聚集的XLPE /二氧化硅纳米复合材料的改进。这些数据可以在附录中找到。

著录项

  • 作者

    Hui, Le.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号