首页> 外文学位 >Population density methods in two spatial dimensions and application to neural networks with realistic synaptic kinetics.
【24h】

Population density methods in two spatial dimensions and application to neural networks with realistic synaptic kinetics.

机译:二维空间中的人口密度方法及其在具有逼真的突触动力学的神经网络中的应用。

获取原文
获取原文并翻译 | 示例

摘要

We explore the extension of the population density methods to a two-dimensional state-space as a computationally efficient method for simulating networks of neurons. The method is applied to integrate-and-fire neurons with realistic synaptic kinetics. In this method neurons are grouped into populations of similar biophysical properties, and for each population a probability density function (PDF) is constructed. This PDF represents the distribution of neurons over state-space. The evolution equation of the probability density functions is a partial differential-integral equation. To begin with, we model neurons with only excitatory synaptic input. In the case where the unitary postsynaptic events are fast enough to be considered instantaneous (Nykamp and Tranchina, 2000), the PDF is one-dimensional, as the state of a neuron is completely determined by its transmembrane voltage. When synaptic kinetics are not assumed to be fast on the time-scale of the resting membrane time constant, and when the unitary postsynaptic conductance event has a single exponential time course, the state-space and the PDF are 2-dimensional; the state of the neuron is determined by its random membrane voltage and random excitatory postsynaptic conductance.; The population firing rate is given by the integral of the flux of probability per unit conductance across the threshold voltage over all possible excitatory postsynaptic conductance values.; We formulate a pair of coupled partial differential-integral equations, one for the neurons in their non-refractory state and the second one for the neurons in the refractory pool. The higher dimensionality causes an increase in computation time. We tackle this problem numerically by using an operator-splitting method to solve our partial-differential integral equations. We compare our two-dimensional results to Monte-Carlo simulations for simple neural networks and check for their speed and accuracy in such instances. We then extend the population density method by adding inhibitory synaptic input. We consider a method for reduction from three to two dimensions and we apply it to small sample neural networks, as well as to a model orientation selectivity network for 1 hypercolumn of the visual cortex.; Limitations of the method are discussed and possible improvements and directions for future study are suggested.
机译:我们探索将人口密度方法扩展到二维状态空间,作为模拟神经元网络的高效计算方法。该方法适用于具有逼真的突触动力学的整合和发射神经元。在这种方法中,将神经元分组为具有相似生物物理特性的种群,并为每个种群构建了概率密度函数(PDF)。该PDF表示神经元在状态空间上的分布。概率密度函数的演化方程是偏微分积分方程。首先,我们仅用兴奋性突触输入来对神经元建模。在单一的突触后事件足够快以至于被认为是瞬时的情况下(Nykamp and Tranchina,2000),PDF是一维的,因为神经元的状态完全由其跨膜电压决定。当在静息膜时间常数的时间尺度上不认为突触动力学快时,并且当单一突触后电导事件具有单个指数时程时,状态空间和PDF为二维;神经元的状态取决于其随机的膜电压和随机的兴奋性突触后电导。人口放电率由阈值电压上所有可能的兴奋性突触后电导值上每单位电导的概率通量的积分给出。我们制定了一对耦合的偏微分积分方程,一个方程用于非难治状态的神经元,第二个方程用于难治性库中的神经元。较高的维数导致计算时间增加。我们通过使用算子分解方法来求解我们的偏微分积分方程,以数值方式解决此问题。我们将二维结果与简单神经网络的蒙特卡洛模拟进行比较,并在这种情况下检查其速度和准确性。然后,我们通过添加抑制性突触输入来扩展人口密度方法。我们考虑了一种从3维减少到2维的方法,并将其应用于小样本神经网络以及1个视觉皮质超柱的模型方向选择性网络。讨论了该方法的局限性,并提出了可能的改进和未来研究的方向。

著录项

  • 作者

    Apfaltrer, Felix J.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号