首页> 外文学位 >Oxidation behavior of in-flight molten aluminum droplets in the twin-wire electric arc thermal spray process.
【24h】

Oxidation behavior of in-flight molten aluminum droplets in the twin-wire electric arc thermal spray process.

机译:飞行中熔融铝小滴在双线电弧热喷涂过程中的氧化行为。

获取原文
获取原文并翻译 | 示例

摘要

This work examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Measurements of droplet size, velocity, and temperature within the spray plume during flight were obtained using in-flight particle pyrometry and laser Doppler velocimetry and used as the basis for the estimating fluid and thermal effects. Pitot tube measurements provided information on the velocity of the freestream air. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment of the surface oxides within the droplet and continually exposing fresh fluid available for oxidation, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a rigid sphere (i.e., without internal circulation). The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of a "typical" droplet with internal circulation is 8.7%. This compares favorably to the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate, which ranges from 3.3 to 12.7%. The oxide volume fraction calculated for a rigid sphere is nearly two orders of magnitude smaller than that of a droplet with internal circulation. The experimental measurements show an elevated, nearly constant droplet surface temperature (∼2000°C) during flight to the substrate. The solution of the governing differential equation for droplet temperature confirms that the continual heat generation produced by the oxidation reaction is necessary to maintain the droplet superheat. The major contribution of this research is the identification of internal circulation in molten droplets as a key mechanism for the formation of oxides in TWEA-sprayed aluminum coatings. Process variables that can be used to adjust the droplet oxide content include changing the oxygen partial pressure and the standoff distance.
机译:这项工作使用双线电弧(TWEA)热喷涂工艺检查了喷涂在空气中的熔融铝的飞行中氧化。使用飞行中粒子高温测定法和激光多普勒测速仪获得了飞行过程中喷雾羽流内的液滴尺寸,速度和温度的测量值,并用作估计流体和热效应的基础。皮托管的测量提供了关于自由气流速度的信息。液滴表面的气动剪切力通过以下方式增强飞行中的氧化程度:(1)促进液滴内表面氧化物的夹带并持续暴露可用于氧化的新鲜流体,(2)产生持续的热量产生效应,从而增加液滴温度超过刚性球体的温度(即没有内部循环)。铝在空气中的氧化反应高度放热,并以能量平衡中的发热项表示。这种连续的热输入源在飞行过程中将液滴保持在液态。基于莫特-卡布雷拉(Mott-Cabrera)理论的线性速率定律用于估算液滴飞行过程中形成的表面氧化物层的生长。具有内部循环的“典型”液滴的经计算的氧化物体积分数为8.7%。这与在室温基材上喷涂的典型TWEA喷涂铝涂层的实验确定的氧化物含量相比,范围为3.3%至12.7%。计算出的刚性球体的氧化物体积分数比具有内部循环的液滴的氧化物体积分数小将近两个数量级。实验测量表明,在飞向基材期间,液滴表面温度升高,接近恒定(约2000°C)。液滴温度控制微分方程的求解证实,由氧化反应产生的连续热量产生对于维持液滴过热是必要的。这项研究的主要贡献是确定了熔滴内部循环,这是在TWEA喷涂铝涂层中形成氧化物的关键机制。可用于调节液滴氧化物含量的过程变量包括更改氧气分压和隔离距离。

著录项

  • 作者

    Guillen, Donna Post.;

  • 作者单位

    Idaho State University.;

  • 授予单位 Idaho State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号