首页> 外文学位 >Characterization of the Structure and Function of the Normal Human Fovea Using Adaptive Optics Scanning Laser Ophthalmoscopy.
【24h】

Characterization of the Structure and Function of the Normal Human Fovea Using Adaptive Optics Scanning Laser Ophthalmoscopy.

机译:使用自适应光学扫描激光检眼镜分析正常人中央凹的结构和功能。

获取原文
获取原文并翻译 | 示例

摘要

In order to study the limits of spatial vision in normal human subjects, it is important to look at and near the fovea. The fovea is the specialized part of the retina, the light-sensitive multi-layered neural tissue that lines the inner surface of the human eye, where the cone photoreceptors are smallest (approximately 2.5 microns or 0.5 arcmin) and cone density reaches a peak. In addition, there is a 1:1 mapping from the photoreceptors to the brain in this central region of the retina. As a result, the best spatial sampling is achieved in the fovea and it is the retinal location used for acuity and spatial vision tasks. However, vision is typically limited by the blur induced by the normal optics of the eye and clinical tests of foveal vision and foveal imaging are both limited due to the blur. As a result, it is unclear what the perceptual benefit of extremely high cone density is. Cutting-edge imaging technology, specifically Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO), can be utilized to remove this blur, zoom in, and as a result visualize individual cone photoreceptors throughout the central fovea. This imaging combined with simultaneous image stabilization and targeted stimulus delivery expands our understanding of both the anatomical structure of the fovea on a microscopic scale and the placement of stimuli within this retinal area during visual tasks. The final step is to investigate the role of temporal variables in spatial vision tasks since the eye is in constant motion even during steady fixation. In order to learn more about the fovea, it becomes important to study the effect of this motion on spatial vision tasks. This dissertation steps through many of these considerations, starting with a model of the foveal cone mosaic imaged with AOSLO. We then use this high resolution imaging to compare anatomical and functional markers of the center of the normal human fovea. Finally, we investigate the role of natural and manipulated fixational eye movements in foveal vision, specifically looking at a motion detection task, contrast sensitivity, and image fading.
机译:为了研究正常人类受试者的空间视力极限,重要的是要注意中央凹及其附近。中央凹是视网膜的特殊部分,是神经敏感的多层神经组织,位于人眼的内表面,视锥细胞的感光细胞最小(约2.5微米或0.5 arcmin),视锥细胞的密度达到峰值。此外,在视网膜的中央区域,从感光器到大脑还有1:1的映射。结果,在中央凹中获得了最佳的空间采样,这是用于视力和空间视觉任务的视网膜位置。然而,视力通常受到眼睛的正常光学所引起的模糊的限制,而中央凹视觉和中央凹成像的临床测试均由于模糊而受到限制。结果,不清楚极高的锥体密度在感知上的好处是什么。可以利用最先进的成像技术,特别是自适应光学扫描激光检眼镜(AOSLO)来消除这种模糊,放大,从而可视化整个中央凹处的各个锥形感光体。这种成像与同时的图像稳定和有针对性的刺激传递相结合,扩大了我们对显微镜下中央凹的解剖结构以及视觉任务期间该视网膜区域内刺激位置的了解。最后一步是研究时间变量在空间视觉任务中的作用,因为即使在稳定注视过程中,眼睛仍处于恒定运动中。为了了解更多有关中央凹的信息,研究这种运动对空间视觉任务的影响变得很重要。本文首先从以AOSLO成像的中央凹圆锥镶嵌模型开始,逐步解决了许多这些问题。然后,我们使用这种高分辨率成像来比较正常人中央凹中心的解剖和功能标记。最后,我们研究自然和受控的注视眼运动在中央凹视觉中的作用,特别是着眼于运动检测任务,对比敏感度和图像褪色。

著录项

  • 作者

    Putnam, Nicole Marie.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Health Sciences Ophthalmology.;Physics Optics.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号