首页> 外文学位 >Surface chemical modification for the immobilization of biomolecules.
【24h】

Surface chemical modification for the immobilization of biomolecules.

机译:表面化学修饰,用于固定生物分子。

获取原文
获取原文并翻译 | 示例

摘要

Surface engineering in biochip technology has received great interest since the high-throughput analysis of biological assay showed a promising potential in biomedical research. The way to immobilize biomolecules should consider the biocompatibility of solid substrate so that the intrinsic activity of the biomolecules remains intact. Our group developed a two step approach to graft poly(ethylene glycol) (PEG) on a silicon surface. It takes advantages of the well-known biocompatible poly(ethylene glycol) and the microfabrication-available silicon surface. DNA is first introduced to test this engineered surface. p-Maleiimide phenyl isocyanate (PMPI) is used as a cross linker. The efficient hybridization of complementary DNA on this template will be discussed. In a next step, we tailor the grafted PEG to introduce Cu2+-IDA complex at the surface. This strategy is originated from immobilized metal affinity chromatographic technique (IMAC) which enables the adsorbed proteins to retain their conformation and orientation. It shows the specificity between the protein and the engineered surface, and the binding specificity in the assay of the immobilized sulfotransferase (ST) with low background. In addition, enzymatic activity is also demonstrated with their orientation upon immobilization. At the end, the behavior of adsorbed lipid vesicles is investigated with functional groups (e.g. NH2, CO2H, OH) at surfaces as a step toward the immobilization of membrane proteins. Unlike soluble proteins, membrane proteins are associated with lipid membranes. It shows the phase change of adsorbed lipid from planar to vesicle configuration by the number of charge groups at surface. Fluorescence recover after photobleaching (FRAP) measurement will be employed to explain this phase transition.
机译:自从生物测定的高通量分析显示出生物医学研究的巨大潜力以来,生物芯片技术中的表面工程引起了极大的兴趣。固定生物分子的方法应考虑固体底物的生物相容性,以使生物分子的内在活性保持完整。我们的小组开发了一种分两步的方法在硅表面接枝聚乙二醇。它利用了众所周知的生物相容性聚乙二醇和可进行微细加工的硅表面。首先引入DNA来测试这种工程表面。对马来酰亚胺酰亚胺异氰酸酯(PMPI)被用作交联剂。将讨论此模板上互补DNA的有效杂交。在下一步中,我们将接枝的PEG定制为在表面引入Cu2 + -IDA复合物。此策略源自固定化的金属亲和色谱技术(IMAC),该技术可使吸附的蛋白质保持其构象和方向。它显示了蛋白质和工程化表面之间的特异性,以及在背景低的固定化磺基转移酶(ST)测定中的结合特异性。另外,还显示了固定化酶活性及其取向。最后,用表面上的官能团(例如NH2,CO2H,OH)研究了吸附的脂质囊泡的行为,以此作为固定膜蛋白的步骤。与可溶性蛋白不同,膜蛋白与脂质膜相关。它通过表面电荷基团的数量显示了吸附的脂质从平面结构到囊泡结构的相变。光漂白(FRAP)测量后的荧光恢复将用于解释此相变。

著录项

  • 作者

    Cha, Taewoon.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biophysics General.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号