首页> 外文学位 >Flapping wing mechanisms for pico air vehicles using piezoelectric actuators.
【24h】

Flapping wing mechanisms for pico air vehicles using piezoelectric actuators.

机译:使用压电致动器的微型航空飞行器的拍打翼机构。

获取原文
获取原文并翻译 | 示例

摘要

Swarms of flying robotic insects could revolutionize hazardous environment exploration, search and rescue missions, and military applications. Reducing size to insect scale enables entrance into extremely narrow spaces with inherent stealth advantages. For mass production, these vehicles must have reliable and repeatable fabrication processes that define flapping wing mechanisms with microscale features and produce large flapping amplitudes at frequencies in the range of many insects. This thesis focuses on the design and fabrication processes of flapping wing mechanisms for these types of robots.;First, the design, fabrication, modeling, and experimental validation of the Penn State Nano Air Vehicle (PSNAV), a NAV scale piezoelectrically actuated clapping wing mechanism, is presented. A flexure hinge allows passive wing rotation for the clapping wing mechanism. Analytical models of wing flapping and rotation are derived and validated using experimental wing trajectory results. The PSNAV prototype is experimentally shown to provide approximately 54 deg. peak to peak wing rotation, 14 deg. peak to peak flapping angle, and 0.21 mN of thrust at 9.5 Hz. At 25.5 Hz, the prototype produces a maximum of 1.34 mN of thrust. The PSNAV model accurately predicts the wing resonances in the experimental prototype. Model-predicted thrust is lower than the experimentally measured values, however.;Towards a compliant mechanism, the next stage of this research introduces a simple process to monolithically fabricate flying robotic insects at the pico air vehicle (PAV) scale from SUEX dry film, an epoxy based negative photoresist similar to SU-8. The developed process has fewer steps compared to other methods, does not use precious metals, and greatly reduces processing time and cost. It simultaneously defines the PAV airframe, compliant flapping mechanism, and artificial insect wing using photolithography. Using this process, we designed and fabricated the LionFly, a flapping wing prototype actuated by a PZT-5H bimorph actuator. Several LionFly prototypes were fabricated and experimentally tested. Theoretical and experimental results have excellent agreement validating the compliant mechanism kinematics and aerodynamic added mass and damping. High voltage tests show a peak to peak flapping angle of 55 deg. at 150 V amplitude with 150 V DC offset at 51 Hz resonance. Consistent performance from multiple prototypes demonstrate the reliable and repeatable nature of the fabrication process.;Lastly, this research presents detailed modeling and experimental testing of wing rotation and lift in the LionFly. A flexure hinge along the span of the wing allows the wing to rotate in addition to flapping. A linear vibrational model is developed and augmented with nonlinear aerodynamic forces using the blade element method. This model is validated using experimental testing with a laser vibrometer and accurately predicts small amplitude wing dynamics in air and vacuum. Strobe photography and high definition image processing is used to measure high amplitude wing trajectories. At higher amplitudes, the model can sufficiently predict wing trajectory amplitudes, but phase measurement and simulation have slight error. The LionFly produces 46 deg. flap and 44 deg. rotation peak to peak with relative phase of 12 deg., and maximum lift of 71 muN at 37 Hz. By reducing the inertia of the wing and tuning the rotational hinge stiffness, a redesigned device is simulated to produce lift to weight ratio of one.
机译:大量飞行的机械昆虫会彻底改变危险环境的勘探,搜救任务和军事应用。将尺寸减小到昆虫规模,可以进入具有固有隐身优势的极其狭窄的空间。为了进行批量生产,这些车辆必须具有可靠且可重复的制造过程,该过程定义具有微尺度特征的扑翼机构,并在许多昆虫范围内的频率处产生较大的扑翼幅度。本文主要针对这些类型的机器人的拍打翼机构的设计和制造过程进行研究。首先,对宾夕法尼亚州立纳米航空器(PSNAV)进行设计,制造,建模和实验验证,这是一种NAV比例压电致动拍打翼。机制,介绍。挠性铰链允许拍手翼机构的被动翼旋转。使用实验机翼轨迹结果推导并验证了机翼拍打和旋转的分析模型。 PSNAV原型通过实验显示可提供约54度的光。峰到峰机翼旋转14度峰到峰拍动角和9.5 Hz时的推力为0.21 mN。在25.5 Hz时,原型产生的最大推力为1.34 mN。 PSNAV模型可准确预测实验原型中的机翼共振。然而,模型预测的推力要低于实验测得的值。为了达到顺应性的机制,本研究的下一个阶段引入了一种简单的方法,以SUEX干膜以微微飞行器(PAV)规模整体制造飞行中的机械昆虫,类似于SU-8的基于环氧的负性光刻胶。与其他方法相比,开发的过程步骤更少,不使用贵金属,并且大大减少了处理时间和成本。它同时使用光刻技术定义了PAV机身,顺应性拍打机制和人造昆虫机翼。通过这一过程,我们设计并制造了由PZT-5H双压电晶片执行器驱动的襟翼原型LionFly。几个LionFly原型被制造出来并进行了实验测试。理论和实验结果具有很好的一致性,验证了柔顺机构的运动学以及空气动力学的附加质量和阻尼。高压测试显示峰到峰的拍打角为55度。在150 V振幅下具有150 V DC偏移,谐振频率为51 Hz。来自多个原型的一致的性能证明了制造过程的可靠性和可重复性。最后,本研究提供了LionFly机翼旋转和升力的详细建模和实验测试。沿着机翼跨度的挠性铰链允许机翼除了拍打外还旋转。使用叶片单元方法,开发了线性振动模型并利用非线性空气动力对其进行了增强。该模型已通过激光测振仪的实验测试得到验证,可准确预测空气和真空中的小振幅机翼动力学。频闪摄影和高清晰度图像处理用于测量高振幅机翼轨迹。在更高的振幅下,该模型可以充分预测机翼轨迹的振幅,但是相位测量和模拟会有轻微误差。 LionFly产生46度。襟翼和44度旋转峰到峰,相对相位为12度,在37 Hz时最大升程为71μN。通过减小机翼的惯性并调整旋转铰链的刚度,可以对重新设计的设备进行仿真,以产生升重比。

著录项

  • 作者

    Mateti, Kiron.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.;Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号