首页> 外文学位 >Time of Formation of Earth and Mars Constrained by Siderophile Element Geochemistry and the Hafnium-182-Tungsten-182 Isotope System.
【24h】

Time of Formation of Earth and Mars Constrained by Siderophile Element Geochemistry and the Hafnium-182-Tungsten-182 Isotope System.

机译:受亲铁元素地球化学和the182-钨182同位素系统限制的地球和火星形成时间。

获取原文
获取原文并翻译 | 示例

摘要

182Hf-182W chronometry is considered the most powerful tool to determine the formation timescale of the terrestrial planets. However, previous work employed oversimplified accretion and core formation models. The accretion and core formation models presented here for the 182W isotopic evolution in the mantles of the accreting Earth and Mars, can incorporate the core formation conditions constrained by siderophile element geochemistry and can be successfully applied to constrain the formation timescale of Earth and Mars.;Elemental abundance analyses of the Allende meteorite and two martian meteorites lead to new estimates of core-mantle concentration ratios of Si, V, Cr and Mn for Earth and two distinct mantle Hf/W ratios for Mars respectively, and provide better constraints on the models. It is concluded that formation of the proto-Earth (∼87% of its present mass) has to complete rapidly in 10.7 +/- 2.5 Myr after the onset of the Solar System for a late (≥ 52 Myr) Moon-forming giant impact. The mean time of Mars' accretion is determined to be 3.6 +/- 0.1 Myr, meaning that Mars accretes to 95% of its present mass in 10.8 +/- 0.3 Myr after the formation of the Solar System. Therefore, Mars is not a planetary embryo, and Mars and proto-Earth may be formed on a similar timescale if a late Moon-forming giant impact is assumed. In contrast, if the Moon formed early at ∼30 Myr then it takes about 3 times longer to form the proto-Earth compared to Mars.;A stochastic mantle stirring and sampling model was developed to investigate the evolution of W isotope heterogeneities in the mantles of Earth and Mars after accretion and core formation. Our results confirm the mantle stirring rate of ∼ 500 Myr constrained by the long-lived isotope systems in Earth and suggest that the mantle stirring rate in Mars is much slower (∼2 Ga).;A new concept is developed: the core formation memory of a siderophile element. Siderophile elements are shown to have different capabilities in recording core formation history, a very important fact to consider in any core formation modeling.
机译:182Hf-182W测年法被认为是确定陆地行星形成时间尺度的最有力工具。但是,以前的工作采用了过度简化的积层和岩心形成模型。此处提出的地球和火星地幔中182W同位素演化的吸积和岩心形成模型,可以结合受铁盐亲和元素地球化学约束的岩心形成条件,并且可以成功地用于约束地球和火星的形成时间尺度。对阿连德陨石和两个火星陨石的元素丰度分析导致对地球的Si,V,Cr和Mn核心地幔浓度比以及火星的两个不同的地幔Hf / W比值进行了新的估计,并为模型提供了更好的约束。结论是,太阳系爆发后,原地球(约占其当前质量的87%)的形成必须在10.7 +/- 2.5 Myr中迅速完成,以形成月末(≥52 Myr)的巨大月球撞击。 。火星积聚的平均时间确定为3.6 +/- 0.1 Myr,这意味着在太阳系形成后,火星在10.8 +/- 0.3 Myr中积聚到其当前质量的95%。因此,火星不是行星胚胎,如果假设晚月形成的巨大撞击,则火星和原始地球可能会以相似的时间尺度形成。相反,如果月球早于约30 Myr形成,则形成原地球的时间是火星的三倍。;建立了一个随机地幔搅拌和采样模型,以研究地幔中W同位素异质性的演化增生和核心形成后地球和火星的变化。我们的结果证实了地球上长寿命同位素系统限制的〜500 Myr地幔搅拌速率,并表明火星的地幔搅拌速率要慢得多(〜2 Ga).;提出了一个新概念:岩心形成记忆嗜铁元素的元素。亲铁元素在记录岩心形成历史方面显示出不同的功能,这是在任何岩心形成模型中都要考虑的非常重要的事实。

著录项

  • 作者

    Yu, Gang.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Planetology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号