首页> 外文学位 >Design of protein-protein interactions via beta-strand pairing.
【24h】

Design of protein-protein interactions via beta-strand pairing.

机译:通过β链配对设计蛋白质相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The design of new protein-protein interfaces is a test of our understanding of protein interaction biophysics and can provide new tools to understand cell biology. Methods to accurately design high-affinity interactions have not been established, making it necessary to devise new strategies to facilitate the design process. Solvent exposed main chain atoms on beta-strands are prone to interact with other exposed strands and could serve as the basis for the design of a novel interaction. This dissertation describes the application of beta-strand pairing to design homodimeric and heterodimeric complexes. It also addresses the successes and failures in computational interface design to determine how design methods need to be improved.;One of the most common ways that proteins interact is the formation of symmetric ho- modimer. A way to test the hypothesis that beta-strand mediated interactions can be accurately designed is to redesign a monomeric protein to form a symmetric homodimer via beta-strand pairing. A computational method in Rosetta was used to find monomeric proteins with exposed beta-strands then redesign them to form a symmetric homodimer by pairing exposed beta-strands to form an intermolecular beta-sheet. A crystal structure of one designed complex closely matches the computational model (RMSD = 1.0 A). This work demonstrates that beta-strand pairing can be used to computationally design new interactions with high accuracy;After successful design of a homodimer, beta-strand pairing can be extended design to heterodimers. A computational protocol is described that identifies proteins with exposed strand capable of pairing with an exposed strand on a target protein. The interface of the identified protein is then redesigned to allow it to bind to the target protein. Experimental testing of proteins designed to bind RalA and PCSK9 show that no interaction is made. Directed evolution of the scaffold proteins could allow them to bind to their target.;Most computational protein interface designs from our laboratory and others fail to form when tested experimentally. Successful and failed protein interface designs were examined to see if they provided answers about what works in interface design. Successful designs were, in general, more hydrophobic than failed designs and had few designed hydrogen bonds buried at the interface. Rosetta designed hydrogen bonds were found not to match hydrogen bond distributions observed in high resolution crystal structures. The hydrogen bonding portion of the energy function needs to be improved to allow for design of polar interfaces similar to those found in native proteins.
机译:新的蛋白质-蛋白质界面的设计是对我们对蛋白质相互作用生物物理学认识的检验,并且可以提供了解细胞生物学的新工具。尚未建立精确设计高亲和力相互作用的方法,因此有必要设计新的策略来促进设计过程。 β链上溶剂暴露的主链原子易于与其他暴露链发生相互作用,并且可以作为设计新型相互作用的基础。本文介绍了β链配对在设计同源二聚体和异源二聚体中的应用。它还解决了计算接口设计的成败,以确定如何改进设计方法。蛋白质相互作用的最常见方式之一是对称均聚物的形成。测试可以正确设计β链介导的相互作用的假设的一种方法是重新设计单体蛋白,以通过β链配对形成对称的同型二聚体。使用Rosetta中的一种计算方法来查找具有暴露的β链的单体蛋白,然后通过将暴露的β链配对以形成分子间β折叠来重新设计它们以形成对称的同型二聚体。一种设计的配合物的晶体结构与计算模型非常接近(RMSD = 1.0 A)。这项工作表明,β-链配对可用于以高精度计算设计新的相互作用;成功设计同型二聚体后,β-链配对可扩展为异二聚体。描述了一种计算方案,该方案鉴定具有能够与靶蛋白上的暴露链配对的暴露链的蛋白质。然后重新设计已识别蛋白质的界面,使其与目标蛋白质结合。设计用于结合RalA和PCSK9的蛋白质的实验测试表明没有相互作用。支架蛋白的定向进化可以使它们与靶标结合。;我们实验室的大多数计算蛋白接口设计,以及其他通过实验测试未能形成的设计。检查成功和失败的蛋白质界面设计,以查看它们是否提供了有关界面设计中有效方法的答案。通常,成功的设计比失败的设计具有更大的疏水性,并且很少有设计的氢键掩埋在界面上。已发现Rosetta设计的氢键与高分辨率晶体结构中观察到的氢键分布不匹配。能量功能的氢键部分需要改进,以允许设计与天然蛋白质相似的极性界面。

著录项

  • 作者

    Stranges, Peter Benjamin.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Chemistry Biochemistry.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号