首页> 外文学位 >Implementations and Applications of van der Waals Density Functionals.
【24h】

Implementations and Applications of van der Waals Density Functionals.

机译:Van der Waals密度函数的实现和应用。

获取原文
获取原文并翻译 | 示例

摘要

Density Functional Theory offers various successful approaches to solve the many-body Schrodinger equation of interacting atoms. However, conventional density functionals, e.g. local density approximations and generalized gradient approximations, are not able to account for the van der Waals interactions accurately between molecules. The nonlocal correlation functional proposed by Dion et al. offers the promise to describe this kind of weak interaction under the framework of density functional theory through being paired with appropriate conventional exchange and correlation functionals. The implementation of nonlocal correlation functionals poses the challenges of dealing with singularities in the model, designing efficient algorithms for large-scale molecular dynamics simulations and formulating the corresponding self-consistent potential and stress. Recent ideas proposed by Roman-Perez and Soler point out an efficient alternative to implement nonlocal correlation that reduces the computational cost from O(N2) to O(N log N), where N is the number of grid points within a unit cell. In this work, we propose an implementation that simplifies Roman-Perez's approach and formulate the potential and stress following our new method. Five versions of van der Waals density functionals are implemented in a plane wave, pseudopotential electronic structure code. We also investigate new ways of parameterizing the kernel function used in van der Waals functionals. Simulations from small to large-scale are performed to test the accuracy of those five van der Waals density functionals. The systems studied in this work include sets of weakly interacting molecular complexes, liquid water, as well as two molecular crystals. We suggest that these systems can serve as useful benchmarks for future developments of van der Waals density functionals.
机译:密度泛函理论提供了多种成功的方法来求解相互作用原子的多体薛定inger方程。但是,常规的密度功能例如局部密度近似和广义梯度近似无法解释分子之间的范德华相互作用。 Dion等人提出的非局部相关函数。通过与适当的常规交换和相关功能配对,提供了在密度泛函理论框架下描述这种弱相互作用的希望。非局部相关函数的实现带来了以下挑战:处理模型中的奇点,设计用于大规模分子动力学模拟的有效算法以及制定相应的自洽势和应力。 Roman-Perez和Soler提出的最新想法指出了一种实现非局部相关性的有效替代方法,该方法可将计算成本从O(N2)降低到O(N log N),其中N是单位单元内的网格点数。在这项工作中,我们提出了一种简化Roman-Perez方法的实施方案,并遵循我们的新方法来阐述潜力和压力。在平面波,伪势电子结构代码中实现了五种范德华密度函数。我们还将研究参数化范德华功能中使用的内核函数的新方法。进行了从小到大规模的仿真,以测试这五个范德华斯密度函数的准确性。在这项工作中研究的系统包括一组弱相互作用的分子配合物,液态水以及两个分子晶体。我们建议这些系统可以作为范德华力密度函数未来发展的有用基准。

著录项

  • 作者

    Wu, Jun.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Physics.;Computer science.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号