首页> 外文学位 >Nano/macro porous bioactive glass scaffold.
【24h】

Nano/macro porous bioactive glass scaffold.

机译:纳米/宏观多孔生物活性玻璃支架。

获取原文
获取原文并翻译 | 示例

摘要

Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging.;In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique.;The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods.;In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area.;To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.
机译:生物活性玻璃(BG)和陶瓷已被广泛研究和开发为植入物,以取代肌肉骨骼系统的硬组织,例如骨骼和牙齿。近来,代替使用通常不能足够迅速地降解并且可能长时间留在人体中的散装材料,用于组织再生的生物支架的想法引起了很大的兴趣。理想的生物支架是多孔材料,其不仅会提供用于天然组织再生的三维结构,而且会逐渐降解,最终被天然组织完全替代。在各种材料选择中,纳米宏双多孔BG似乎是生物支架应用的最有希望的候选者。在这里,大孔促进组织生长,而纳米孔控制降解并增强细胞反应。还可以通过改变纳米孔的大小来调节控制支架降解的表面积。然而,具有期望的纳米孔和大孔的这种3D结构的制造仍然具有挑战性。在本论文中,已经开发了溶胶-凝胶工艺与旋节线分解或聚合物海绵复制方法相结合以制造纳米宏多孔BG支架。通过溶胶-凝胶转变将聚合物诱导的旋节线结构冷冻,可形成高达100微米的大孔,而通过聚合物海绵复制技术可获得预定尺寸的较大大孔(> 200um)。玻璃制造的凝胶方法已采用以下几种方法进行了定制:在凝胶点形成之前,使用酸催化剂会生成小的纳米孔,从而导致弱支化的聚合物状网络。另一方面,具有高度支化的簇状结构的碱催化凝胶产生较大的纳米孔。在胶凝点之后,可以通过控制烧结温度和/或溶剂交换过程中使用的氨浓度来进一步修饰纳米结构。尽管两种技术都降低了BG支架的表面积,但温度依赖性的烧结过程会通过致密化封闭纳米孔,而浓度依赖性的溶剂交换过程会通过Ostwald-ripening型粗化扩大纳米孔。因此,使用这些方法可独立控制BG支架的纳米孔大小和表面积。研究了体外细胞和体内动物组织反应,以评估纳米宏多孔BG支架的性能。发现细胞迁移并深入到3D纳米宏多孔结构中,同时对生物支架表面表现出出色的粘附性。重要的是,具有血管和胶原纤维的新组织形成在植入支架内部的深处,而没有明显的炎症反应。此外,我们的观察结果表明BG支架中纳米孔的生物学益处。与没有纳米孔的BG支架相比,细胞迁移和渗透更快,更深,主要是由于表面积的增加而渗透到纳米微孔双BG支架中。为了研究纳米孔形貌的影响,我们制造了具有相同表面的BG支架。面积,但纳米孔尺寸不同。发现在具有相同表面积但纳米孔尺寸较小的BG支架上,初始细胞附着显着增强,表明纳米孔的形貌强烈影响BG支架的性能。总之,目前的结果最清楚地证明了我们的纳米宏双孔BG作为用于再生医学和硬组织工程的新型且卓越的3D生物支架的有用性。

著录项

  • 作者

    Wang, Shaojie.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号